Nature: Как плодовые мушки управляют навигационной системой мозга
Когда мы идем по улице, у нас есть внутреннее ощущение того, в какую сторону мы движемся, благодаря уличным сигналам и физическим ориентирам, а также ощущение того, куда бы мы хотели пойти. Но как мозг координирует эти направления, выполняя мысленную математику, которая подсказывает нам, в какую сторону повернуть?
Новое исследование описывает такой нейронный процесс у плодовых мушек, давая представление о том, как мозг животного направляет его в нужную сторону. Исследование, опубликованное в журнале Nature, показывает, как нейроны, сигнализирующие о направлении, в котором муха ориентирована в данный момент, работают вместе с нейронами, сигнализирующими о направлении, в котором муха хочет быть ориентирована — ее целевом направлении — и образуют цепь, которая направляет животное.
Фундаментальный вопрос заключается в том, как мозг обеспечивает навигацию, — говорит Габи Меймон из Рокфеллера.
В этом исследовании мы описали нейроны, которые подают сигналы о направлении цели, а также схему мозга, которая использует эти сигналы для управления.
Навигационные цели
Клетки, отвечающие за подачу сигналов о том, в какую сторону муха ориентируется в мире (так называемые «компасные» нейроны), были впервые обнаружены в 2015 году. Несколько лет спустя работа лаборатории Маймона и других ученых показала, что мухи с дефектными компасными нейронами не могут ориентироваться по прямой линии вдоль произвольного направления. Основываясь на этом открытии, Питер Мусселлс Пирес, студент из лаборатории Меймона и ведущий автор данной работы, задался целью обнаружить клетки, ответственные за отслеживание угла наклона цели мухи.
Пирес и его коллеги использовали двухфотонную микроскопию для наблюдения за нейронами мух, пока насекомые ходили по шару, приводимому в движение воздухом, в виртуальной среде. Когда исследователи вращали виртуальную среду, активность нейронов компаса мухи также менялась в мозге. Интересно, однако, что популяция клеток, идентифицированных как нейроны FC2, оставалась неподвижной и фокусировалась на первоначальном направлении.
Представьте, что вы идете по Манхэттену, а
кто-то дергает вас за плечо и поворачивает на восток. Что-то в вашем мозгу продолжает отслеживать, в какой стороне север, чтобы вы могли вернуться к первоначальному направлению, — объясняет Маймон.У мух это нейроны FC2.
Чтобы подтвердить роль нейронов FC2 в отслеживании цели, команда использовала оптогенетику — технику, которая использует свет для управления активностью нейронов. Манипулируя активностью клеток FC2, исследователи смогли предсказуемо изменить направление навигации мухи. «Именно этот эксперимент убедил нас в том, что эти клетки действительно могут определять цель мухи», — говорит Пирес.
Ментальная математика
Определив нейроны направления и нейроны цели, команда переключила свое внимание на мозговую цепь, отвечающую за объединение этих двух сигналов. Недавняя работа по изучению коннектома мозга мухи — карты с подробным описанием связей между различными нейронами — помогла исследователям найти эту цепь. Из коннектома стало ясно, что набор клеток, называемых PFL3, получает входные сигналы как от компаса, так и от нейронов цели.
Серия экспериментов подтвердила, что нейроны PFL3 указывают телу мухи, в какую сторону поворачивать, воздействуя на двигательную систему мозга. Они делают это, сравнивая внутренние сигналы о направлении и цели, функционируя как рулевое колесо в навигационной системе мухи. Ларри Эбботт, теоретик из Колумбийского университета, сотрудничал с командой, чтобы разработать математическое понимание этой системы. Модель Эббота отражала, как сигналы компаса и цели, представленные в мировых или картографических координатах (например, север/восток/юг/запад), преобразуются в двигательные сигналы в системе координат тела, то есть в повороты налево и направо. Дополнительные результаты по нейронам PFL, тесно связанные с настоящим исследованием, подробно описаны в параллельной статье в Nature.
Будущая работа лаборатории Маймона будет направлена на изучение того, как мухи строят и хранят более долгосрочные пространственные воспоминания и цели для управления поведением; сигнал цели, охарактеризованный в данном исследовании, лишь объясняет, что мухи будут делать в ближайшие несколько секунд. Маймону также интересно узнать, могут ли эти новые открытия послужить катализатором для обнаружения аналогичных мозговых цепей у млекопитающих и, в конечном счете, у человека.
Изучая мозг мухи, — говорит он, — мы получили первый взгляд на то, как простая «мысль» преобразуется в действие. Надеюсь, в дальнейшем эти находки позволят нам понять более сложные формы этого процесса у млекопитающих.