![]() |
Исследователи из Принстона применили сплетение волокон, поддерживающих структуру живых клеток, для разработки нанотехнологической платформы. В конечном итоге новая разработка может привести к развитию мягкой робототехники, созданию новых лекарств и синтетических систем для высокоточного переноса биомолекул. В статье, опубликованной 17 января в Proceedings of the National Academy of Sciences, исследователи продемонстрировали метод, который позволяет им точно контролировать рост биополимерных сетей, подобных тем, что составляют часть клеточного скелета. Они смогли построить эти сети на микрочипе, сформировав тип цепи, работающей с химическими, а не электрическими сигналами. Внутри клеток белки тубулина образуют длинные и невероятно тонкие стержни, называемые микротрубочками. Сети микротрубочек, подобно корням деревьев, разрастаются в разветвленные системы, образующие основной элемент цитоскелета, который придает клеткам форму и позволяет им делиться. Кроме того, что микротрубочки помогают поддерживать форму клетки, они также работают как молекулярная железная дорога. Специализированные белки-двигатели переносят молекулярные грузы по филаментам микротрубочек. Небольшие изменения в молекулярном составе микротрубочек действуют как указатели, корректирующие курс химических носителей, отправляя молекулярные грузы по назначению. В Принстоне вопросы об этих внутриклеточных сетях привели к сотрудничеству Сабины Петри, доцента кафедры молекулярной биологии, и Говарда Стоуна, профессора механической и аэрокосмической инженерии, специализирующегося на механике жидкостей.
В нервной системе сети микротрубочек работают как структуры, соединяющие нервные клетки, и как средство передачи химических сигналов, вызывающих ощущения. По словам Заферани, ученые все еще работают над пониманием элементов роста и химических свойств микротрубочек. Но, по его словам, исследовательская группа хотела узнать, смогут ли они использовать эти сети для практического применения.
Вместе с соисследователем Рюнджуном Сонгом Заферани работал над созданием системы контроля роста микротрубочек в чистых лабораториях Принстонского института материалов. Используя специализированное оборудование для микро/нанофабрикации и микрофлюидики, исследователи точно контролировали рост ветвей микротрубочек. Они могли регулировать угол и направление роста и смогли создать микроструктуры, в которых направление роста микротрубочек регулировалось. По словам Заферани, Институт материалов предлагает уникальное сочетание оборудования и опыта, которое трудно найти В дальнейшем исследователи планируют направлять химические грузы вдоль ветвей микротрубочек. Цель — создать управляемую химическую транспортную систему. В рамках смежной работы они также изучают возможность использования сетей микротрубочек в качестве инструментов, подобных микропинцетам, которые оказывают физическое воздействие на невероятно крошечные объекты. Исследовательская группа Петри давно сотрудничает со Стоуном, профессором механической и аэрокосмической инженерии Дональдом Р. Диксоном '69 и Элизабет В. Диксон, на стыке биологии и гидродинамики. В 2021 году они получили грант от Принстонского фонда трансформирующихся технологий Эрика и Венди Шмидт. Они наняли Сонга, инженера-механика, который в своей аспирантуре занимался микрофлюидикой, и Заферани, биофизика, изучавшего сигналы, которые помогают сперматозоидам млекопитающих двигаться к яйцеклетке. Стоун, который часто сотрудничает с коллегами из инженерных и естественных наук, говорит, что смешение знаний из разных дисциплин часто приводит к замечательным результатам.
25.01.2024 |
Хайтек
![]() | |
Прощай, кэш-память: новая технология сэкономит энергию и ускорит устройства | |
Исследователи вместе с французской компан... |
![]() | |
Энергия будущего: низкотемпературная плазма и ее невероятные возможности | |
Питер Брюггеман, профессор машиностроения из&n... |
![]() | |
10 секунд до чистоты: история устройства, которое изменило дезинфекцию | |
Ручной прибор MBR UV-C Light Products работает... |
![]() | |
От идеи до Росатома: история успеха проекта RSP | |
В НИЯУ МИФИ создали онлайн-сервис —... |
![]() | |
CARMA II — автономный робот, который делает ядерные объекты безопаснее | |
Передовая роботизированная система CARMA II ус... |
![]() | |
Нейросети будущего: поляритоны в СПбГУ бьют рекорды точности | |
Ученые из Санкт-Петербургского государств... |
![]() | |
Биотопливо за полтора часа: как томские ученые подстегнули энергетику | |
Междисциплинарная команда ученых из Томск... |
![]() | |
MIT учит дронов избегать столкновений: новый метод GCBF+ | |
Инженеры из MIT придумали, как сдела... |
![]() | |
Свет, который не вредит: в КНИТУ-КАИ открыли новый способ исследования клеток | |
Молодые ученые из КНИТУ-КАИ совершили про... |
![]() | |
Фокус на будущее: киноформные линзы меняют правила игры | |
Сотрудники лаборатории 3D-печати функциональны... |
![]() | |
ПГУ: Струна и закон Архимеда помогут сэкономить миллионы на нефтепродуктах | |
Ученые из Пензенского государственного ун... |
![]() | |
Российский минерал совершил революцию в мире двумерных материалов | |
Ученые Томского политехнического университета ... |
![]() | |
Свет из земли: как глина превратилась в дисплей | |
Мир дисплеев скоро изменится благодаря новым м... |
![]() | |
Будущее горнодобывающей промышленности: инновации, меняющие правила игры | |
Дэвид Джайлс, главный научный сотрудник MinEx ... |
![]() | |
В МИФИ создан радиоизотопный прибор для отечественной металлургии | |
В Национальном исследовательском ядерном униве... |
![]() | |
NatComm: Найден «благородный» способ увеличить вместимость карт памяти | |
Электронику будущего можно сделать еще ме... |
![]() | |
Преодоление физических барьеров: на пути к новым квантовым технологиям | |
Комментирует профессор Майя Вергниори, которая... |
![]() | |
Впервые в России: в Катайске начали выпуск уникальных насосов | |
Катайский насосный завод, который находится в&... |
![]() | |
Ученые ТПУ продемонстрировали, как у капель появляются «пальцы» | |
Исследователи из Томского политехническог... |
![]() | |
Science Advances: Ученые сумели подключить электроды к клеткам | |
Исследователям из Университета Линчепинга... |
![]() | |
Компания Xanadu представляет Aurora — первый в мире фотонный квантовый компьютер | |
Компания Xanadu представила первый в мире... |
![]() | |
В ТПУ создали скэффолды с эффектом памяти формы для регенерации костной ткани | |
Ученые Томского политехнического университета ... |
![]() | |
Квантовые открытия: как исследования бозона Хиггса расширяют границы науки | |
Кэтрин Лени из ЦЕРН комментирует последни... |
![]() | |
Физики разработали алгоритм для изучения запутанности в квантовых системах | |
Квантовая запутанность — явление, п... |
![]() | |
Small Methods: Сублимация кристаллов диарилэтена — контроль над формой | |
Фотомеханические материалы из фотохромных... |
![]() | |
Квантовые датчики обеспечат технологическую революцию к 2045 году | |
Квантовые датчики находятся в авангарде т... |
![]() | |
Новый проект ЦЕРН меняет представление о производительности и устойчивости | |
Проект Эффективный ускоритель частиц, EPA,&nbs... |
![]() | |
Стало известно, зачем ЕС инвестирует 24 млн евро в полупроводники | |
Европейский союз предпринимает решительные шаг... |
![]() | |
В МИФИ создали интеллектуальную систему контроля работы 3D-принтеров | |
Сотрудники Снежинского физико-технического инс... |
![]() | |
Как приручить термоядерное горение: ученые познают секреты работы с плазмой | |
Исследователи из Милана, Италия, раскрыва... |