Группа исследователей из Нью-Йоркского университета создала новый способ визуализации кристаллов, позволяющий заглянуть внутрь их структуры, что роднит разработку с рентгеновским зрением. Новая методика, которую они назвали Crystal Clear, сочетает в себе использование прозрачных частиц и микроскопов с лазерами, которые позволяют ученым видеть каждую единицу, составляющую кристалл, и создавать динамические трехмерные модели.
Атомные кристаллы — это твердые материалы, строительные блоки которых расположены повторяющимся, упорядоченным образом. Время от времени какой-нибудь атом отсутствует или находится не на своем месте, в результате чего образуется дефект. Именно расположение атомов и дефектов создает различные кристаллические материалы — от поваренной соли до алмазов — и придает им свойства. Для изучения кристаллов многие ученые, в том числе и Саканна, используют не атомы, а кристаллы, состоящие из мельчайших сфер, называемых коллоидными частицами. Коллоидные частицы крошечные — часто около микрометра в диаметре, или в десятки раз меньше человеческого волоса, — но они гораздо крупнее атомов, и поэтому их легче увидеть под микроскопом. Прозрачная структураВ ходе своей работы над пониманием того, как образуются коллоидные кристаллы, исследователи осознали необходимость видеть внутренности этих структур. Под руководством Шихао Цанга, аспиранта из лаборатории Саканны и первого автора исследования, команда задалась целью создать метод визуализации строительных блоков внутри кристалла. Сначала они разработали прозрачные коллоидные частицы и добавили к ним молекулы красителя, что позволило различить каждую частицу под микроскопом с помощью их флуоресценции. Микроскоп не позволил бы исследователям заглянуть внутрь кристалла, поэтому они обратились к технике визуализации под названием конфокальная микроскопия, которая использует лазерный луч, сканирующий материал, чтобы вызвать направленную флуоресценцию молекул красителя. Это позволяет выявить каждую двухмерную плоскость кристалла, которые можно сложить друг на друга, чтобы построить трехмерную цифровую модель и определить местоположение каждой частицы. Модели можно вращать, нарезать и разбирать на части, чтобы заглянуть внутрь кристаллов и увидеть любые дефекты. В одном из экспериментов исследователи использовали этот метод визуализации на кристаллах, которые образуются, когда два кристалла одного типа растут вместе — явление, известное как «задваивание». Заглянув внутрь моделей кристаллов, по структуре напоминающих поваренную соль или сплав меди и золота, они увидели общую плоскость примыкающих друг к другу кристаллов — дефект, который приводит к появлению этих особых форм. Эта общая плоскость раскрыла молекулярное происхождение задваивания. Кристаллы в движенииНовая техника позволяет ученым не только наблюдать за статичными кристаллами, но и визуализировать их в процессе изменения. Например, что происходит, когда кристаллы плавятся — перестраиваются ли частицы, перемещаются ли дефекты? В эксперименте, в котором исследователи расплавили кристалл со структурой минеральной соли хлорида цезия, они с удивлением обнаружили, что дефекты были стабильны и не перемещались, как ожидалось. Чтобы подтвердить правильность своих экспериментов со статическими и динамическими кристаллами, команда также использовала компьютерное моделирование для создания кристаллов с теми же характеристиками, подтвердив, что их метод Crystal Clear точно передает то, что находится внутри кристаллов.
Теперь, когда у ученых есть метод визуализации внутренней части кристаллов, они могут с большей легкостью изучать их химическую историю и процесс формирования, что может проложить путь к созданию более совершенных кристаллов и разработке фотонных материалов, взаимодействующих со светом.
03.06.2024 |
Хайтек
MIT: С новой технологией 3D-печати — выше скорость изготовления и меньше отходов | |
Если использовать 3D-принтер специальным образ... |
Nature Methods: Ученые добились нанометрового разрешения с обычным микроскопом | |
Более простой и недорогой способ получени... |
PRL: Свет помог визуализировать магнитные домены квантовых антиферромагнитов | |
Визуализировать с помощью света магнитные... |
Science: Найден святой грааль для каталитической активации алканов | |
Новый метод активации алканов, разработанный и... |
AENM: Создан новый метод синтеза для снижения температуры спекания электролитов | |
Новый метод синтеза электролитов разработали у... |
Advanced Science: Разработан клей, отлично схватывающий во влажных условиях | |
Учёные разработали новый клей, вдохновлённые о... |
Advanced Science: Ученые предложили освободить мозг роботов для сложных задач | |
Инженеры придумали, как передавать робота... |
Открыт метод 3D-полимеризации с использованием маломощных лазерных осцилляторов | |
Прямая лазерная запись, LDW, с использова... |
SciAdv: Состоялась первая успешная демонстрация двухмедийной NV-лазерной системы | |
Измерение крошечных магнитных полей, таких как... |
В ПНИПУ нашли способ сохранить данные после тестов высокотехнологичных изделий | |
Стендовые испытания — важный этап р... |
Advanced Materials: ИИ ускоряет открытие энергетических и квантовых материалов | |
Новый инструмент на основе искусственного... |
В КНИТУ получили суперконструкционный полимер для медицины | |
Учёные сразу нескольких кафедр КНИТУ вместе с&... |
CS: Уменьшена зависимость между прочностью и возможностью переработки полимеров | |
Исследователи из Университета Осаки созда... |
В ТПУ синтезировали чистый диборид титана для ядерных реакторов | |
Учёные молодёжной лаборатории ТПУ создали... |
В МИФИ придумали, как создать более чувствительные датчики магнитного поля | |
Метод измерения магнитного поля на основе... |
Казанские физики нашли способ прогнозировать вязкость нефти | |
Учёные Института физики Казанского федеральног... |
AP: Архитектура diffraction casting вдохнет жизнь в оптические вычисления | |
Для работы искусственного интеллекта и др... |
В ПНИПУ создали модель для оптимизации термомеханической обработки материалов | |
Термомеханическая обработка металлов и сп... |
Учёные СПбГЭТУ «ЛЭТИ» усовершенствовали робота-художника | |
Учёные разработали новые алгоритмы, которые по... |
Пермские учёные нашли способ повысить надёжность аэродинамической поверхности | |
В аэрокосмической сфере используют сенсорную т... |
Science Advances: Найден новый способ увеличить эффективность солнечных батарей | |
Учёные в области материаловедения и ... |
Optics Letters: С помощью ЖК-структур созданы универсальные бифокальные линзы | |
Исследователи создали новый тип бифокальн... |
MIT: В помощь роботам создан метод для обнаружения нужных объектов | |
Недавно разработанный в MIT метод под&nbs... |
Nature BE: Прорыв в медицинской визуализации улучшит диагностику рака и артрита | |
Новый ручной сканер, который может быстро созд... |
Магнитный бутерброд может сделать электронику мощнее и энергоэффективнее | |
Учёные ищут способы сделать компьютеры мощнее ... |
Кубический азот высокой плотности синтезировали при атмосферном давлении | |
Материалы высокой энергетической плотности на&... |
Nature Physics: Открытие монополей углового момента поможет развитию орбитроники | |
Монополи орбитального углового момента вызываю... |
Light: Science & Application: Открытие поможет применять волоконные лазеры | |
Сложные системы, такие как климатические,... |
Advanced Science: На основе зубной пасты создан съедобный транзистор | |
Транзистор на основе зубной пасты создала... |
В ПНИПУ разработали модель для оптимизации применения оптоволокна в медицине | |
При некоторых операциях, а также в л... |