Инженеры-биомедики из Университета Дьюка разработали принципиально новый подход к созданию диагностических приборов, использующих только силу тяжести для транспортировки, смешивания и других манипуляций с каплями жидкости. Для демонстрации результатов требуются только коммерчески доступные материалы и очень небольшая мощность, что делает этот подход потенциально привлекательным для применения в условиях ограниченных ресурсов.
Исследование, проведенное в лаборатории Ашутоша Чилкоти (Ashutosh Chilkoti), заслуженного профессора биомедицинской инженерии Алана Каганова (Alan L. Kaganov Distinguished Professor of Biomedical Engineering at Duke), опубликовано 11 июля в журнале Device. Потребность в простых, удобных в использовании устройствах для оказания медицинской помощи не иссякает. Многие демонстрационные и коммерческие устройства стремятся ставить диагнозы или измерять важные биомаркеры, используя всего несколько капель жидкости, при этом требуется как можно меньше энергии и опыта. Их цель — улучшить медицинское обслуживание миллиардов людей, живущих в условиях низких ресурсов вдали от традиционных больниц и квалифицированных врачей. Все эти тесты имеют одни и те же основные требования: они должны перемещать, смешивать и измерять небольшие капли, содержащие биологические образцы и активные ингредиенты, позволяющие измерять специфические биомаркеры. В более дорогих моделях для управления этими реакциями используются крошечные электрические насосы. Другие используют физические свойства жидкостей в микроканалах (микрофлюидика), создающие своего рода эффект всасывания. Это первая демонстрация, в которой используется только сила тяжести. Каждый из подходов обладает как уникальными полезными возможностями, так и недостатками.
Новый гравитационный подход опирается на набор из девяти имеющихся в продаже поверхностных покрытий, которые могут регулировать смачиваемость и скользкость в любой точке устройства. То есть они могут регулировать, насколько капли сплющиваются в блин или остаются сферическими, облегчая или затрудняя их скольжение по наклонной поверхности. Используя эти покрытия в разумных комбинациях, можно создать все микрофлюидные элементы, необходимые для проведения анализов в точках оказания медицинской помощи. Например, если в данном месте поверхность очень скользкая, а капля находится на пересечении, где одна сторона тянет жидкость к плоскости, а другая толкает ее в шар, то это будет действовать как насос и ускорять каплю по направлению к первой.
Объединив эти элементы, исследователи создали прототип теста для измерения уровня лактатдегидрогеназы (ЛДГ) в образце человеческой сыворотки. В тестовой платформе были вырезаны каналы для создания определенных путей движения капель, каждый из которых был покрыт веществом, препятствующим застреванию капель на пути их движения. Кроме того, в определенные места были помещены высушенные реагенты, необходимые для проведения теста, которые впитываются каплями простого буферного раствора по мере их движения. Весь тест, похожий на лабиринт, закрывается крышкой с парой отверстий, через которые капает образец и буферный раствор. После загрузки тест помещается в устройство, напоминающее коробку, с ручкой, которая поворачивает тест на 90 градусов, позволяя силе тяжести выполнить свою работу. Это устройство также оснащено простым светодиодным и световым детектором, который позволяет быстро и легко определить количество синего, красного или зеленого цвета в результатах теста. Это означает, что исследователи могут пометить три различных биомаркера разными цветами для измерения различных тестов. В случае с прототипом теста LDH биомаркер помечен синей молекулой. Простой микроконтроллер измеряет, насколько глубокий синий оттенок приобретает результат теста и как быстро он меняет цвет — что указывает на количество и концентрацию LDH в образце — и выдает результаты.
Демонстрация результатов работы дает новый подход, который следует учитывать при разработке недорогих, маломощных диагностических устройств, предназначенных для оказания медицинской помощи». Группа планирует продолжить разработку своей идеи, но при этом надеется, что и другие исследователи обратят внимание и займутся созданием аналогичных тестов.
11.07.2023 |
Хайтек
NatComm: Учёные приблизились к созданию биополимеров, реагирующих на воду | |
Новый подход для понимания и предска... |
В Челябинске разрабатывают инновационное оборудование для вибрационных испытаний | |
Специалисты ЮУрГУ совместно с Уральским и... |
В ТПУ создали многоразовые накопители водорода из отечественного сырья | |
Более дешевые металлогидридные накопители водо... |
Новый подход к производству цифрового света решает проблемы 3D-печати | |
Новый метод производства цифрового света для&n... |
AEM: Гибридный полупроводник позволит лучше понять спинтронику | |
Электроны вращаются без электрического за... |
Томские ученые представили цифровое решение для оптимизации НПЗ | |
Новый программный комплекс представили ученые ... |
МАИ: Дроны-дефектоскописты уступают человеку в точности, зато берут скоростью | |
Методику создания синтетических данных для&nbs... |
Численное моделирование повысит эффективность 3D-печати из стали 316LSi | |
Морская нержавейка, или сталь 316LSi, шир... |
Создан особо пластичный алюминиевый сплав для высокотехнологичных отраслей | |
Новый сплав на основе алюминия создали ис... |
В НГУ разработали первые фильтры для технологии связи 6G | |
Уникальные фильтры для импульсной терагер... |
Nat. Nanotechnol: Разработан самоочищающийся электрод для синтеза пероксидов | |
Пероксиды металлов — MO₂, M=Ca, Sr,... |
В СПбГУ создали новые биоактивные молекулы с помощью золотого катализатора | |
Метод соединения двух простых веществ с п... |
AFM: Разработан материал для поглощения электромагнитных волн широкого спектра | |
Ультратонкий пленочный композитный материал, с... |
PRL: Доказана возможность открытия новых сверхтяжелых элементов | |
Уран — самый тяжелый из извест... |
NE: Новый жидкостный акустический датчик распознаёт голоса в шумной обстановке | |
Инженеры разработали множество сложных датчико... |
Science: Новый метод спектроскопии раскрывает квантовые секреты воды | |
Вода — это жизнь. Но водо... |
В ИРНИТУ создали первую партию инклинометров и объединили их в умную сеть | |
Сотрудники Центра маркшейдерских и геодез... |
Ученые УУНиТ создали первый отечественный станок для сухого электрополирования | |
Ученые Уфимского университета науки и тех... |
Ученые КФУ выяснили, как дефекты в полупроводниках влияют на свет | |
Физическая модель, которая описывает взаимодей... |
Новый метод синтеза лекарств открыли российские химики | |
Новый метод синтеза производных пирролизидина ... |
Advanced Materials: Созданы волокна в одежду для питания смартфона от тепла тела | |
Термоэлектрический материал, который можно исп... |
Ultrafast Science: Ученые успешно ускорили идентификацию молекул лазером | |
В 100 раз ускорили измерения спектроскопи... |
В УрФУ разработали технологию 3D-печати из жаропрочных титановых сплавов | |
Технологию создания жаропрочных сплавов на&nbs... |
Ученые ЮУрГУ предложили уникальную технологию повышения надежности сварки | |
Уникальную технологию повышения надежности сва... |
В Томском университете создали интегральные схемы для российских РЛС | |
Первый российский комплект интегральных схем д... |
Российские ученые приблизились к созданию искусственной сетчатки | |
Оптоэлектронный синапс — мемристор ... |
Экологичная замена полиэтиленовым упаковкам разработана в МГУ | |
Биоразлагаемый полимер — полипропил... |
CS: Создана технология производства компонентов для шампуней и лекарств | |
Исследователи из России и Китая разр... |
APN: Фотонные вычисления помогут продвинуться в области аналоговых вычислений | |
Дифференциальные уравнения с частными про... |
Ученые НИТУ МИСИС разработали магнитные микропровода для имплантатов и датчиков | |
Новые ультратонкие аморфные микропровода, кото... |