![]() |
Более 15 лет после открытия быстрых радиовсплесков — космических взрывов электромагнитного излучения миллисекундной длительности — астрономы всего мира прочесывают Вселенную в поисках разгадки того, как и почему они образуются. Почти все обнаруженные радиовсплеск возникли в глубоком космосе за пределами нашей галактики Млечный Путь. Так было до апреля 2020 г., когда был обнаружен первый галактический радиовсплеск 20200428. Этот радиовсплеск был порожден магнетаром (SGR J1935+2154) — плотной нейтронной звездой размером с город, обладающей невероятно мощным магнитным полем. Открытие позволило некоторым предположить, что радиовсплеск, обнаруженные на космологических расстояниях за пределами нашей Галактики, также могут быть порождены магнетарами. Однако «дымящийся пистолет» такого сценария — период вращения, обусловленный спином магнетара, — до сих пор не был обнаружен. Новое исследование SGR J1935+2154 проливает свет на это любопытное несоответствие. В выпуске журнала Science Advances от 28 июля международная группа ученых, включая астрофизика из Университета Южной Калифорнии Бинга Чжана, сообщает о продолжении наблюдения за SGR J1935+2154 после радиовсплеск в апреле 2020 года и об обнаружении другого космологического явления, известного как фаза радиопульсара, пять месяцев спустя. Разгадка космологической загадкиВ поисках ответов астрономы опираются на мощные радиотелескопы, такие как массивный сферический радиотелескоп с пятисотметровой апертурой (FAST) в Китае, который позволяет отслеживать радиовсплески и другую активность в глубоком космосе. С помощью FAST астрономы обнаружили, что радиовсплеск 20200428 и более поздняя фаза пульсара происходят из разных областей в пределах магнетара, что намекает на их различное происхождение.
Такая дихотомия в режимах излучения из области магнитосферы помогает астрономам понять, как и где возникают радиовсплески и связанные с ними явления в пределах нашей галактики, а также, возможно, и на более далеких космологических расстояниях. Радиоимпульсы — это космические электромагнитные взрывы, похожие на радиовсплеск, но обычно излучающие с яркостью примерно на 10 порядков меньше, чем радиовсплески. Импульсы обычно наблюдаются не в магнетарах, а в других вращающихся нейтронных звездах, известных как пульсары. По словам Чжана, автора-корреспондента статьи и директора Невадского центра астрофизики, большинство магнетаров не излучают радиоимпульсы большую часть времени, вероятно, из-за их чрезвычайно сильных магнитных полей. Но, как и в случае с SGR J1935+2154, некоторые из них становятся временными радиопульсарами после всплесков активности. Еще одной чертой, отличающей всплески от импульсов, являются фазы их излучения, т.е. временное окно, в котором происходит радиоизлучение в каждый период излучения.
По словам Чжана, радиовсплеск от апреля 2020 года и несколько более поздних, менее энергичных всплесков излучались в случайных фазах, не входящих в окно импульса, определенное в фазе пульсара.
Последствия для космических радиовсплесковСтоль детальное наблюдение галактического источника радиовсплесков проливает свет на загадочные радиовсплески, преобладающие в космосе. Многие источники космологических радиовсплесков — тех, что возникают за пределами нашей галактики, — наблюдались неоднократно. В некоторых случаях FAST обнаружил тысячи повторяющихся всплесков от нескольких источников. В прошлом по этим всплескам проводились глубокие поиски периодичности на уровне секунд, и до сих пор никакого периода обнаружено не было. По мнению Чжана, это ставит под сомнение популярную в прошлом идею о том, что повторяющиеся радиовсплески питаются от магнетаров.
30.07.2023 |
Космос
![]() | |
Nature Geoscience: Ученые возвестили начало лунного антропоцена | |
Впервые люди потревожили лунную пыль 13 сентяб... |
![]() | |
PNAS: Есть ли признаки жизни на холодной луне Сатурна? | |
По мере развития астрофизических технологий и&... |
![]() | |
AstroJ: Карликовые галактики используют 10 млн лет затишья для рождения звезд | |
Если посмотреть на массивные галактики, и... |
![]() | |
Nature: Водород в лунных образцах дает новую надежду на освоение космоса | |
Исследователи Военно-морской исследовательской... |
![]() | |
NASA: Уэбб обнаружил новые объекты в центре Млечного Пути | |
На последнем снимке космического телескопа НАС... |
![]() | |
В атмосфере экзопланеты найдены водяной пар, сернистый газ и песчаные облака | |
Группа европейских астрономов под руковод... |
![]() | |
The Astrophysical Journal: Найдены ответы на вопросы о джетах из черных дыр | |
Все знают о черных дырах одно: в них... |
![]() | |
Nature Synthesis: Иммиграция на Марс становится реальнее | |
Иммиграция на Марс и жизнь на н... |
![]() | |
На космической рождественской елке нашли 14 транзитных объектов | |
Международная группа ученых под руководст... |
![]() | |
The Astrophysical Journal: Богатые газом галактики зажгли раннюю Вселенную | |
Новые изображения, полученные с помощью к... |
![]() | |
Nature: Глубоко в недрах Земли, возможно, покоятся останки древней планеты | |
В 1980-х годах геофизики сделали поразительное... |
![]() | |
Ракета НАСА увидит раскаленный край звездообразующей сверхновой | |
Новая зондирующая ракета отправится в кос... |
![]() | |
Необычайно долгий гамма-всплеск открывает путь к новому пониманию Вселенной | |
Ученые наблюдали образование редких химических... |
![]() | |
Nature: Разгадана тайна марсианской оболочки | |
В течение четырех лет посадочный аппарат ... |
![]() | |
Curiosity обнаружил новые возможные доказательства существования жизни на Марсе | |
Новый анализ данных, полученных с помощью... |
![]() | |
Physical Review Letters: Астрофизики открыли новый способ поиска темной материи | |
Главный вопрос в продолжающихся поисках т... |
![]() | |
Новое моделирование пересматривает стандартную модель космологии | |
Когда ученые увидели первые изображения самых ... |
![]() | |
Ученые обнаружили прямое доказательство спина черной дыры в галактике M87 | |
Сверхмассивная черная дыра в центре галак... |
![]() | |
Наблюдения за сверхновой SN 2023ixf ставят под сомнение теорию звездной эволюции | |
Недавно обнаруженная близкая сверхновая, звезд... |
![]() | |
Дом сверкающего неба и лавовых морей поможет понять эволюцию Земли | |
Лавовые миры — массивные экзопланет... |
![]() | |
Как звездная активность влияет на экзопланеты в системе TRAPPIST-1 | |
Астрономы под руководством сотрудников Мо... |
![]() | |
Сразу несколько черных дыр нашли в ближайшем к Земле звездном скоплении | |
Работа, опубликованная в журнале Monthly ... |
![]() | |
МКС и Чужие: марсианским биопленкам конец благодаря инновационным поверхностям | |
После пребывания в космосе на борту ... |
![]() | |
Исследователи подтвердили наличие двух теплых юпитеров вокруг карликовой звезды | |
Ученые из Университета Нью-Мексико и ... |
![]() | |
Icarus journal: Солнечная активность влияет на глобальную облачность на Нептуне | |
Астрономы обнаружили связь между изменением об... |
![]() | |
Nature: Аппарат Solar Orbiter обнаружил струи газа из атмосферы Солнца | |
Анализ показывает, что министруйки газа с... |
![]() | |
Nature Astronomy: Астрономы могут наблюдать темные пятна на Нептуне с Земли | |
С помощью Очень большого телескопа, или V... |
![]() | |
Ученые ищут новые типы гравитационных волн в глубоком космосе | |
Ученые эффектно подтвердили существование грав... |
![]() | |
Nature Communications: астронавты теряют жир в костном мозге после приземления | |
Исследование, проведенное на 14 астронавт... |
![]() | |
Корейский астрофизик усомнился в корректности теории гравитации | |
Южнокорейский профессор Кю-Хюн Чэ провел ... |