Ученые Брукхейвенской национальной лаборатории Министерства энергетики США успешно продемонстрировали, что автономные методы могут открывать новые материалы. Метод, основанный на искусственном интеллекте (ИИ), привел к открытию трех новых наноструктур, включая первую в своем роде наноразмерную «лестницу». Результаты исследования опубликованы сегодня в журнале Science Advances. Вновь открытые структуры образовались в результате процесса, который называется самосборкой, когда молекулы материала организуются в уникальные структуры. Ученые Брукхейвенского центра функциональных наноматериалов (CFN) являются экспертами в управлении процессом самосборки, создавая шаблоны, которые позволяют сформировать необходимые структуры для применения в микроэлектронике, катализе и других областях. Открытие наноразмерной лестницы и других новых структур еще больше расширяет сферу применения самосборки.
Сотрудники CFN стремятся создать библиотеку типов самосборных наношаблонов, чтобы расширить сферу их применения. В предыдущих исследованиях они продемонстрировали, что новые типы узоров становятся возможными при смешивании двух самособирающихся материалов.
Объединение самособирающихся материалов позволило ученым CFN открыть уникальные структуры, но это также создало новые проблемы. Поскольку в процессе самосборки можно контролировать гораздо больше параметров, поиск правильной комбинации параметров для создания новых и полезных структур — это борьба со временем. Чтобы ускорить свои исследования, ученые CFN использовали новую возможность ИИ: автономное экспериментирование. Брукхейвенские ученые из CFN разрабатывают систему искусственного интеллекта, которая может автономно определять и выполнять все этапы эксперимента. Алгоритм gpCAM от CAMERA управляет автономным принятием решений. Нынешнее исследование является первой успешной демонстрацией способности алгоритма открывать новые материалы.
В этом исследовании он был использован особенно изобретательно для автономного изучения различных особенностей модели.
Чтобы ускорить открытие материалов с помощью нового алгоритма, команда сначала разработала сложный образец со спектром свойств для анализа. Исследователи изготовили образец с помощью установки нанопроизводства CFN и провели самосборку в лаборатории синтеза материалов.
Затем команда доставила образец в NSLS-II, где генерируется сверхъяркое рентгеновское излучение для изучения структуры материалов. В партнерстве с NSLS-II CFN управляет тремя экспериментальными станциями, одна из которых использовалась в данном исследовании — линия излучения Soft Matter Interfaces (SMI).
По мере измерения образца на лучевой линии SMI алгоритм без вмешательства человека создавал модель многочисленной и разнообразной структуры материала. Модель обновлялась с каждым последующим рентгеновским измерением, делая каждое измерение более глубоким и точным. В течение нескольких часов алгоритм определил три ключевые области в сложном образце для более тщательного изучения. Исследователи использовали электронную микроскопию для получения изображений этих ключевых областей в мельчайших деталях, обнаружив рельсы и перекладины наноразмерной лестницы, а также другие новые особенности. От начала до конца эксперимент длился около шести часов. По оценкам исследователей, при использовании традиционных методов им потребовалось бы около месяца, чтобы совершить это открытие.
Однако автономные методы не только ускоряют процесс, но и расширяют сферу исследований, что означает, что ученые смогут решать более сложные научные задачи.
Команда активно применяет свой автономный метод исследования для решения еще более сложных задач по обнаружению материалов для самосборки, а также других классов материалов. Методы автономного обнаружения адаптируются и могут использоваться для решения любой исследовательской задачи.
14.01.2023 |
Нано
ACS Nano: Новое открытие улучшит дизайн микроэлектронных устройств | |
Как работает электроника нового поколения и&nb... |
Small: Совершен прорыв в создании пленок с использованием оксида графена | |
Исследовательская группа из Университета ... |
В УГНТУ разработали установку по переработке печной сажи в графен | |
Установку, которая перерабатывает печную сажу&... |
Nature Photonics: Уникальный нанодиск продвигает исследования в области фотоники | |
Нанообъект с уникальными оптическими свой... |
ТПУ: Графен позволяет управлять свойствами диэлектриков с высоким преломлением | |
Учёные Инженерной школы неразрушающего контрол... |
Science: Стало возможным массовое производство металлических нанопроводов | |
Новый метод выращивания крошечных металлически... |
NatNano: Новый метод молекулярной инженерии позволит создавать сложные органоиды | |
Новый метод молекулярной инженерии позволяет в... |
NatComm: Нанобиосенсоры открывают широкие возможности в медицинской диагностике | |
Биосенсоры — это устройства, к... |
Наночастицы висмута помогут лечить опухоли | |
Учёные НИЯУ МИФИ в сотрудничестве с ... |
Физики МГУ усовершенствовали метод создания магнитных наночастиц из кобальта | |
Учёные физического факультета МГУ совмест... |
В Казани химики КФУ изучили оксид графена с помощью инфракрасной спектроскопии | |
Учёные из Химического института им. А.М. ... |
В ТПУ доказали эффективность наночастиц серебра в лечении мастита у 700 коров | |
Учёные Томского политехнического университета ... |
Нанопоры — не дефекты, они улучшают характеристики материалов | |
Обычно пустоты и поры считаются дефектами... |
AdMa: Открыты листы из нанокубиков, которые оказались отличными катализаторами | |
Исследователи из Токийского столичного ун... |
Уникальное наноустройство открывает путь к новым беспроводным каналам связи | |
Многим знакома эта сцена: вы работае... |
ACS Nano: Благодаря 3D-печати ученые впервые увидели, как светятся наноструктуры | |
Учёные из Корейского научно-исследователь... |
Нанопластики нарушают структуру и функциональность белков в грудном молоке | |
Исследователи из Техасского университета ... |
JACS: Инфракрасное облучение заставляет атомы «танцевать румбу» | |
Когда молекулы облучают инфракрасным светом, о... |
Ученые наблюдали избирательную люминесценцию золотых хиральных наночастиц | |
При облучении хиральных золотых наночастиц фем... |
ACS Applied Nano Materials: Наноструктуры Au-BiFeO3 сделают планету чище | |
Потребность в устойчивых и экологичн... |
Прорыв в нанотехнологиях поможет создать дисплей, дающий цвет в реальном времени | |
Разработана революционная технология, позволяю... |
Наноразмерное покрытие ускоряет работу катализаторов на основе наночастиц золота | |
Исследователи из Токийского столичного ун... |
ASC Nano: Ученые придумали, как свернуть нанолист в рулончик | |
Исследователи из Токийского столичного ун... |
Nature Materials: Новаторские нанополости раздвигают горизонты в удержании света | |
Команда европейских и израильских физиков... |
Nature: В нанотрубках обнаружена сверхэластичность, вызванная окислением | |
Окисление может ухудшить свойства и функц... |
Nano Letters: Вибрирующие нанопузырьки помогут усовершенствовать очистку воды | |
Новое исследование физики вибрирующих нанопузы... |
Nature Nanotechnology: Замена асбеста в строительстве оказалась не менее опасной | |
Патогенный потенциал вдыхания инертных волокни... |
Nano Letters: Уязвимость ГЭБ у пациентов с Альцгеймером используют для лечения | |
Нейродегенеративными заболеваниями, такими как... |
Nature Nanotechnology: Созданы новые пикопружины для биомедицинских нужд | |
Исследователи из Хемница, Дрездена и ... |
Electrochemistry Communications: Из нанопагод ZnO разработан фотоэлектрод | |
Исследовательская группа, состоящая из со... |