Cочетание 2d материалов приводит к созданию структур с удивительными свойствами

Создание новых материалов путем комбинирования слоев с уникальными полезными свойствами кажется достаточно интуитивно понятным процессом — складывай материалы и получай выгоду. Однако это не всегда так.

Не каждый материал позволяет энергии проходить через него одинаково, и преимущества одного материала могут быть получены за счет другого.

Используя новейшие инструменты, ученые из Центра функциональных наноматериалов (CFN) при Брукхейвенской национальной лаборатории Министерства энергетики США (DOE) и Института экспериментальной физики Варшавского университета создали новую слоистую структуру из двумерного материала, в которой наблюдается уникальный перенос энергии и заряда. Понимание свойств этого материала может привести к усовершенствованию таких технологий, как солнечные батареи и другие оптоэлектронные устройства.

Результаты исследования опубликованы в журнале Американского химического общества Nano Letters.

Двумерные материалы — крошечные, но могучие

Дихалькогениды переходных металлов (ТМД) — это класс материалов, по своей структуре напоминающих сэндвичи с атомарно тонкими слоями. Основу TMD составляет переходный металл, который, как и большинство элементов, может образовывать химические связи с электронами на своей внешней орбите или оболочке, а также на следующей оболочке. Этот металл находится между двумя слоями халькогенов — элементов, в состав которых входят кислород, сера и селен. Все халькогены имеют шесть электронов во внешней оболочке, что делает их химическое поведение схожим. Толщина каждого из этих слоев материала составляет всего один атом — одна миллионная толщины пряди человеческого волоса, что позволяет называть их двумерными (2D) материалами.

На атомном уровне можно наблюдать уникальные и настраиваемые электронные свойства, — говорит Абдулла Аль-Махбуб (Abdullah Al-Mahboob), штатный научный сотрудник Брукхейвена из группы CFN Interface Science and Catalysis.

ТМД — это как игровая площадка физики. Мы перемещаем энергию из одного материала в другой на атомном уровне.

В материалах такого масштаба начинают проявляться некоторые новые свойства. Например, графен является двумерной версией графита — материала, из которого изготавливается большинство карандашей. В эксперименте, удостоенном Нобелевской премии, ученые использовали кусок клейкой ленты для отрыва чешуек от графита, чтобы изучить слой графена. Исследователи обнаружили, что графен невероятно прочен на атомном уровне — в 200 раз прочнее стали по отношению к ее весу! Кроме того, графен является прекрасным тепловым и электрическим проводником и обладает уникальным спектром поглощения света. Это открыло путь к изучению двумерных форм других материалов и их свойств.

Двумерные материалы интересны сами по себе, но при их соединении происходят удивительные вещи. Каждый материал обладает своей собственной суперспособностью — защищает материалы от воздействия окружающей среды, контролирует передачу энергии, поглощает свет на разных частотах, а когда ученые начинают складывать их вместе, получается так называемая гетероструктура. Эти гетероструктуры способны на необычные вещи и могут быть однажды интегрированы в будущие технологии, такие как уменьшенные электронные компоненты и более совершенные детекторы света.

QPress — первый в своем роде экспериментальный инструмент

Хотя изучение этих материалов начиналось с такого простого предмета, как липкая лента, инструменты, используемые для извлечения, выделения, каталогизации и создания двумерных материалов, стали весьма совершенными. В CFN для изучения этих гетероструктур и методов их создания выделена целая система — Quantum Material Press (QPress).

QPress трудно с чем-то сравнить, — говорит Суджи Парк (Suji Park), штатный научный сотрудник Брукхейвена, специализирующийся на электронных материалах.

Он создает структуру слой за слоем, как 3D-принтер, но двумерные гетероструктуры создаются с помощью совершенно другого подхода». QPress создает слои материала толщиной в атом или два, анализирует их, каталогизирует и, наконец, собирает. Робототехника используется для систематического изготовления этих сверхтонких слоев с целью создания новых гетероструктур.

QPress состоит из трех модулей, изготовленных по индивидуальному заказу, — эксфолиатора, каталогизатора и укладчика. Для создания двумерных слоев ученые используют эксфолиатор. Подобно ручному клею, эксфолиатор имеет механизированный роликовый узел, который отшелушивает тонкие слои от крупных исходных кристаллов с помощью регуляторов, обеспечивающих такую точность, которую невозможно достичь вручную.

После сбора и распределения исходные кристаллы прижимаются к пластине из оксида кремния и отслаиваются от нее. Затем они передаются в каталогизатор — автоматизированный микроскоп, сочетающий в себе несколько методов определения оптических характеристик. Каталогизатор использует машинное обучение (ML) для выявления интересующих чешуек, которые затем заносятся в базу данных. В настоящее время ML обучается только на данных о графене, но исследователи будут постоянно добавлять различные виды двумерных материалов. Ученые могут использовать эту базу данных для поиска чешуек материала, необходимого им для исследования.

При наличии необходимых материалов ученые могут использовать укладчик для изготовления из них гетероструктур. Используя высокоточную робототехнику, они берут чешуйки образца и располагают их в нужном порядке, под любым необходимым углом, переносят подложки для создания конечной гетероструктуры, которая может храниться длительное время в библиотеке образцов для последующего использования. Для обеспечения качества образцов контролируется микроклимат, а процесс изготовления — от эксфолиации до создания гетероструктур — проходит в среде инертного газа в перчаточном боксе. Отшелушенные чешуйки и уложенные образцы хранятся в вакууме, в библиотеках образцов кластера QPress. Кроме того, в вакуумной части кластера имеются инструменты для электронно-лучевого испарения, отжига и кислородной плазмы. Для передачи образцов из одной зоны QPress в другую используются роботы. Однако после того, как новые гетероструктуры изготовлены, что и как они делают?

После того как команда CFN изготовила эти новые удивительные материалы с помощью QPress, они интегрировали их с набором современных инструментов для микроскопии и спектроскопии, что позволило им исследовать оптоэлектронные свойства, не подвергая образцы воздействию воздуха, который мог бы разрушить структуру материала. Некоторые тонкие и экзотические квантовые свойства двумерных материалов требуют для своего обнаружения сверхнизких криотемператур, вплоть до нескольких кельвинов. В противном случае они нарушаются при малейшем нагреве или воздействии химических веществ, присутствующих в воздухе.

Работа Аль-Махбуба финансируется проектом DOE «Квантовые материалы: Integrated Multimodal Characterization and Processing (QM-IMCP), к созданию которого приступил CFN. Эта платформа будет включать в себя современные микроскопы, рентгеновские спектрометры и сверхбыстрые лазеры, способные исследовать квантовый мир при криотемпературах.

Создание более совершенных структур

Используя расширенные возможности этих ресурсов, команда смогла получить более подробное представление о том, как происходит передача энергии на большие расстояния в ТМД.

Энергия стремится перемещаться по материалам, как человек стремится подняться по лестнице, но ей необходимо место, за которое можно ухватиться. Зазоры можно представить себе как пространство между перекладинами лестницы. Чем больше зазор, тем труднее и медленнее подниматься. Если зазор слишком велик, то, возможно, даже не удастся закончить подъем. Используя материалы, уже обладающие отличными проводящими свойствами, группа ученых смогла сложить их таким образом, чтобы использовать их структуру для создания путей, обеспечивающих более эффективную передачу заряда.

Одним из созданных группой TMD был дисульфид молибдена (MoS2), который, как показали предыдущие исследования, обладает сильной фотолюминесценцией. Фотолюминесценция — это явление, которое заставляет некоторые материалы светиться в темноте после воздействия на них света. Когда материал поглощает свет с энергией, превышающей энергию полосовой щели, он может излучать свет с энергией фотонов, равной энергии полосовой щели. Если второй материал с равным или меньшим значением энергетической границы раздела приближается к первому, вплоть до субнанометров и нескольких нанометров, энергия может нерадиационно передаваться от первого материала ко второму. При этом второй материал может излучать свет с энергией фотонов, равной энергии его полосовой щели.

С помощью изолирующей прослойки из гексагонального нитрида бора (hBN), препятствующей электронной проводимости, ученые наблюдали необычный вид передачи энергии на большие расстояния между этим ТМД и ТМД из диселенида вольфрама (WSe2), который очень эффективно проводит электричество. Процесс передачи энергии происходил от материалов с более низкой полосой пропускания к более высокой, что не характерно для гетероструктур ТМД, в которых передача обычно происходит от двумерных материалов с более высокой полосой пропускания к более низкой. Толщина прослойки сыграла большую роль, но также оказалась не совсем верной.

Мы были удивлены поведением этого материала, — сказал Аль-Махбуб.

Взаимодействие между двумя слоями увеличивается с увеличением расстояния до определенного предела, а затем начинает уменьшаться. Такие переменные, как расстояние между слоями, температура и угол наклона, играют важную роль.

Получив более полное представление о том, как эти материалы поглощают и излучают энергию в таких масштабах, ученые смогут применить эти свойства в новых типах технологий и усовершенствовать существующие. Это могут быть солнечные элементы, более эффективно поглощающие свет и лучше удерживающие заряд, фотосенсоры с более высокой точностью и электронные компоненты, которые могут быть уменьшены до еще меньших размеров для создания более компактных устройств.

20.08.2023


Подписаться в Telegram



Нано

JACS: Инфракрасное облучение заставляет атомы «танцевать румбу»
JACS: Инфракрасное облучение заставляет атомы «танцевать румбу»

Когда молекулы облучают инфракрасным светом, о...

ACS Applied Nano Materials: Наноструктуры Au-BiFeO3 сделают планету чище
ACS Applied Nano Materials: Наноструктуры Au-BiFeO3 сделают планету чище

Потребность в устойчивых и экологичн...

ASC Nano: Ученые придумали, как свернуть нанолист в рулончик
ASC Nano: Ученые придумали, как свернуть нанолист в рулончик

Исследователи из Токийского столичного ун...

Nano Letters: Вибрирующие нанопузырьки помогут усовершенствовать очистку воды
Nano Letters: Вибрирующие нанопузырьки помогут усовершенствовать очистку воды

Новое исследование физики вибрирующих нанопузы...

Nature Nanotechnology: Замена асбеста в строительстве оказалась не менее опасной
Nature Nanotechnology: Замена асбеста в строительстве оказалась не менее опасной

Патогенный потенциал вдыхания инертных волокни...

Nano Letters: Уязвимость ГЭБ у пациентов с Альцгеймером используют для лечения
Nano Letters: Уязвимость ГЭБ у пациентов с Альцгеймером используют для лечения

Нейродегенеративными заболеваниями, такими как...

Electrochemistry Communications: Из нанопагод ZnO разработан фотоэлектрод
Electrochemistry Communications: Из нанопагод ZnO разработан фотоэлектрод

Исследовательская группа, состоящая из со...

LS&A: Исследователи усилили передачу сигнала в перовскитовых нанолистах
LS&A: Исследователи усилили передачу сигнала в перовскитовых нанолистах

Перовскитовые материалы по-прежнему вызывают б...

Nature Communications: В модельном организме ученые нашли наноструктуры
Nature Communications: В модельном организме ученые нашли наноструктуры

У всех представителей животного царства есть ж...

PNAS: Ученые применили нанотехнологии для понимания поведения опухолей
PNAS: Ученые применили нанотехнологии для понимания поведения опухолей

Исследование, проведенное докторантом Пабло С....

Small: Форма пропеллера поможет обуздать движение наночастиц
Small: Форма пропеллера поможет обуздать движение наночастиц

Самодвижущиеся наночастицы потенциально могут ...

Science Advances: Нанопластики способствуют развитию болезни Паркинсона
Science Advances: Нанопластики способствуют развитию болезни Паркинсона

Нанопластики взаимодействуют с особым бел...

Nature Materials: Из наночастиц и ДНК ученые собрали квазикристалл
Nature Materials: Из наночастиц и ДНК ученые собрали квазикристалл

Наноинженеры создали квазикристалл &mdash...

Physical Review Fluids: Волновую механику применили в нанометровом масштабе
Physical Review Fluids: Волновую механику применили в нанометровом масштабе

Исследователи показали, что принципы рабо...

Исследователи создали нанопленку, укрощающую огонь
Исследователи создали нанопленку, укрощающую огонь

Высокотемпературное пламя используется для&nbs...

Ученые разработали нанотатуировки для наблюдения за клетками
Ученые разработали нанотатуировки для наблюдения за клетками

Инженеры разработали наноразмерные татуировки&...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Biology Methods and Protocols: В борьбу с раком бросают искусственный интеллект
Biology Methods and Protocols: В борьбу с раком бросают искусственный интеллект
JCI: Тяжелая форма COVID-19, возможно, связана с аутоантителами
JCI: Тяжелая форма COVID-19, возможно, связана с аутоантителами
Разгадана тайна снижения производительности перспективного катодного материала
Разгадана тайна снижения производительности перспективного катодного материала
Каждый четвертый родитель говорит, что ребенок не может уснуть из-за тревоги
Каждый четвертый родитель говорит, что ребенок не может уснуть из-за тревоги
Nature Neuroscience: Ученые доказали, что терпение приносит свои плоды
Nature Neuroscience: Ученые доказали, что терпение приносит свои плоды
Познакомьтесь со странной амфибией, которая выкармливает своих детенышей молоком
Познакомьтесь со странной амфибией, которая выкармливает своих детенышей молоком
Climate Dynamics: Вот как условия на суше влияют на муссонный климат Азии
Climate Dynamics: Вот как условия на суше влияют на муссонный климат Азии
В 40% случаев люди ошибочно называют сгенерированное фото человека реальным
В 40% случаев люди ошибочно называют сгенерированное фото человека реальным
Nature Communications: Открыто революционное явление в жидких кристаллах
Nature Communications: Открыто революционное явление в жидких кристаллах
Nature Communications: В мигрирующих нейронах найден конус роста
Nature Communications: В мигрирующих нейронах найден конус роста
Current Biology: Исследование брачного поведения показывает эволюцию влечения
Current Biology: Исследование брачного поведения показывает эволюцию влечения
BioDesign Research: Для производства каротиноидов разработали специальные дрожжи
BioDesign Research: Для производства каротиноидов разработали специальные дрожжи
Scientific Reports: Реакция на происходящее влияет на понимание будущих событий
Scientific Reports: Реакция на происходящее влияет на понимание будущих событий
Богатый белком рацион меняет микробиом кишечника и общее состояние организма
Богатый белком рацион меняет микробиом кишечника и общее состояние организма
IEEE: Экзоскелет поможет перенесшим инсульт вернуться к нормальной жизни
IEEE: Экзоскелет поможет перенесшим инсульт вернуться к нормальной жизни

Новости компаний, релизы

Биохимики СПбГУ выяснили, что гипоксия плода в сочетании со стрессом матери может приводить к никотиновой зависимости
Новая "Кантиана" поможет студентам быстрее адаптироваться к калининградскому климату
Российские ученые предложили тушить пожары с помощью газогидратного огнетушителя
Минералоги СПбГУ нашли на острове Диско возможный источник фосфора для возникновения первых живых организмов
Московский Политех внедряет ИИ для повышения эффективности приемной кампании и трансформации обучения