Исследователи создали нанопленку, укрощающую огонь
Высокотемпературное пламя используется для создания самых разнообразных материалов, однако после того, как огонь хорошенько разгорится, бывает трудно контролировать взаимодействие пламени с обрабатываемым материалом.
Исследователи разработали метод, при котором защитный слой толщиной в молекулу позволяет контролировать взаимодействие тепла пламени с материалом, укрощая огонь и позволяя тонко настраивать характеристики обрабатываемого материала.
Огонь является ценным инженерным инструментом — в конце концов, доменная печь — это всего лишь интенсивный огонь, — говорит Мартин Туо (Martin Thuo), автор-корреспондент статьи о работе и профессор материаловедения и инженерии в Университете штата Северная Каролина.
Однако, как только вы разжигаете огонь, вы часто не можете контролировать его поведение.
В нашей методике, которую мы назвали обратной термической деструкцией или ITD, используется наноразмерная тонкая пленка, нанесенная на исследуемый материал. Тонкая пленка изменяется в зависимости от температуры пожара и регулирует количество кислорода, которое может попасть в материал. Это означает, что мы можем контролировать скорость нагрева материала, что, в свою очередь, влияет на химические реакции, происходящие в нем. По сути, мы можем точно настроить, как и где огонь изменяет материал.
Вот как работает ITD. Вначале вы получаете целевой материал, например целлюлозное волокно. Затем на это волокно наносится слой молекул толщиной в нанометр. Затем волокно с покрытием подвергается воздействию интенсивного пламени. Внешняя поверхность молекул легко сгорает, повышая температуру в непосредственной близости от волокна. Однако внутренняя поверхность молекулярного покрытия химически изменяется, образуя вокруг целлюлозных волокон еще более тонкий слой стекла. Это стекло ограничивает доступ кислорода к волокнам, не позволяя целлюлозе вспыхнуть. Вместо этого волокна тлеют — горят медленно, изнутри.
Без защитного слоя ITD воздействие пламени на целлюлозные волокна привело бы к образованию пепла, — говорит Туо.
С защитным слоем в итоге получаются углеродные трубки.
Мы можем создать защитный слой, чтобы регулировать количество кислорода, поступающего к целевому материалу. А целевой материал можно модифицировать для получения желаемых характеристик.
Исследователи провели демонстрационные испытания с использованием целлюлозных волокон для получения микромасштабных углеродных трубок.
Исследователи могли регулировать толщину стенок углеродных трубок, изменяя размер целлюлозных волокон, которые они использовали вначале; вводя в волокна различные соли (что дополнительно регулирует скорость горения); изменяя количество кислорода, проходящего через защитный слой.
У нас уже есть несколько вариантов применения, которые мы рассмотрим в дальнейших исследованиях, — говорит Туо.
Мы также готовы сотрудничать с частным сектором для поиска различных практических применений, например, разработки углеродных трубок для разделения нефти и воды, что было бы полезно как для промышленного применения, так и для восстановления окружающей среды.
Результаты опубликованы в издании Angewandte Chemie.