Nature Physics: Ученые впервые показали новый квантовый эффект — спинарон

В вюрцбургской лаборатории физиков-экспериментаторов профессора Маттиаса Боде и доктора Артема Одобеско царят экстремальные условия. В рамках кластера передовых технологий ct.qmat, объединяющего JMU Würzburg и TU Dresden, эти ученые устанавливают новые рубежи в квантовых исследованиях.

Их последнее начинание — открытие эффекта спинарона. Они стратегически правильно расположили отдельные атомы кобальта на медной поверхности, понизили температуру до 1,4 Кельвина (-271,75° Цельсия), а затем подвергли их воздействию мощного внешнего магнитного поля.

Магнит, который мы используем, стоит полмиллиона евро. Он не является широкодоступным, — поясняет Боде.

Последующий анализ привел к неожиданным открытиям.

Крошечный атом, масштабный эффект

Мы можем увидеть отдельные атомы кобальта с помощью сканирующего туннельного микроскопа. Каждый атом имеет спин, который можно представить как северный или южный магнитный полюс. Измерение этого спина имело решающее значение для наших удивительных открытий, — объясняет Боде.

Мы осадили магнитный атом кобальта из паровой фазы на немагнитную медную основу, в результате чего атом стал взаимодействовать с электронами меди.

Исследование подобных корреляционных эффектов в квантовых материалах является основной задачей ct.qmat, которая обещает в будущем стать инновационной в области технологий.

Как регби в яме с мячом

С 1960-х годов физики твердого тела предполагали, что взаимодействие между кобальтом и медью можно объяснить эффектом Кондо, при котором различные магнитные ориентации атома кобальта и электронов меди аннулируют друг друга. Это приводит к состоянию, в котором электроны меди связаны с атомом кобальта, образуя так называемое «облако Кондо». Однако Боде и его сотрудники в своей лаборатории углубились в изучение этого вопроса. Они подтвердили альтернативную теорию, предложенную в 2020 году теоретиком Самиром Лунисом из исследовательского института Forschungszentrum Jülich.

Используя силу интенсивного внешнего магнитного поля и применяя железный наконечник в сканирующем туннельном микроскопе, вюрцбургские физики смогли определить магнитную ориентацию спина кобальта. Этот спин не является жестким, а постоянно переключается туда-сюда, т.е. из состояния «спин вверх» (положительный) в состояние „спин вниз“ (отрицательный), и наоборот. Такое переключение возбуждает электроны меди, и это явление называется спинарон-эффектом.

Боде поясняет его с помощью яркой аналогии:

Из-за постоянного изменения выравнивания спинов состояние атома кобальта можно сравнить с мячом для регби. Когда мяч для регби непрерывно вращается в яме для игры в мяч, окружающие мячи смещаются волнообразно. Именно это мы и наблюдали — электроны меди начали колебаться в ответ и связались с атомом кобальта.

Боде продолжает:

Эта комбинация изменяющейся намагниченности атома кобальта и связанных с ним электронов меди и есть спинарон, предсказанный нашим коллегой из Юлиха.

Первое экспериментальное подтверждение эффекта спинарона, полученное командой из Вюрцбурга, ставит под сомнение эффект Кондо. До сих пор он считался универсальной моделью для объяснения взаимодействия между магнитными атомами и электронами в квантовых материалах, таких как дуэт кобальта и меди.

Боде замечает:

Пора вписать в учебники физики существенную звездочку.

Спинарон и спинтроника

В эффекте спинарона атом кобальта находится в вечном движении, сохраняя свою магнитную сущность, несмотря на взаимодействие с электронами. В эффекте Кондо, напротив, магнитный момент нейтрализуется за счет взаимодействия с электронами.

Наше открытие важно для понимания физики магнитных моментов на металлических поверхностях, — заявляет Боде.

Если заглянуть в будущее, то подобные явления могут открыть путь к магнитному кодированию и транспортировке информации в новых типах электронных устройств. Это явление, получившее название «спинтроника», может сделать информационные технологии более экологичными и энергоэффективными.

Однако Боде сдерживает ожидания, говоря о практической применимости этой комбинации кобальта и меди. По сути, мы манипулируем отдельными атомами при сверхнизких температурах на нетронутой поверхности в сверхвысоком вакууме. Это невозможно для сотовых телефонов.

Хотя корреляционный эффект является переломным моментом в фундаментальных исследованиях для понимания поведения материи, я не могу создать на его основе реальный выключатель.

В настоящее время вюрцбургский квантовый физик Артем Одобеско и теоретик из Юлиха Самир Лунис сосредоточились на масштабном обзоре многочисленных публикаций, в которых с 1960-х годов описывается эффект Кондо в различных комбинациях материалов.

Мы подозреваем, что многие из них действительно описывают эффект спинарона, — заключает Одобеско.

Если это так, то мы перепишем историю теоретической квантовой физики.

26.10.2023


Подписаться в Telegram



Хайтек

В Томском университете создали интегральные схемы для российских РЛС
В Томском университете создали интегральные схемы для российских РЛС

Первый российский комплект интегральных схем д...

Physical Review C: Синтезирован новый изотоп плутония
Physical Review C: Синтезирован новый изотоп плутония

Физики из Китая выяснили, что период...

V&PP: Ученые приблизились к созданию печатной активной электроники
V&PP: Ученые приблизились к созданию печатной активной электроники

Активная электроника, которая управляет электр...

Science: Найден святой грааль для каталитической активации алканов
Science: Найден святой грааль для каталитической активации алканов

Новый метод активации алканов, разработанный и...

Advanced Science: Разработан клей, отлично схватывающий во влажных условиях
Advanced Science: Разработан клей, отлично схватывающий во влажных условиях

Учёные разработали новый клей, вдохновлённые о...

В КНИТУ получили суперконструкционный полимер для медицины
В КНИТУ получили суперконструкционный полимер для медицины

Учёные сразу нескольких кафедр КНИТУ вместе с&...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

НАСА представило прототип телескопа для обсерватории гравитационных волн
НАСА представило прототип телескопа для обсерватории гравитационных волн
IC&HE: Больничный пол послужит барометром заболеваемости коронавирусом
IC&HE: Больничный пол послужит барометром заболеваемости коронавирусом
Ecology: Из-за потепления белые медведи и ездовые собаки травмируют лапы
Ecology: Из-за потепления белые медведи и ездовые собаки травмируют лапы
International Journal of Research in Marketing: На политике можно делать выручку
International Journal of Research in Marketing: На политике можно делать выручку
Nature Chemical Biology: Созданы молекулы, нацеленные на белки, вызывающие рак
Nature Chemical Biology: Созданы молекулы, нацеленные на белки, вызывающие рак
В УрФУ разработали технологию 3D-печати из жаропрочных титановых сплавов
В УрФУ разработали технологию 3D-печати из жаропрочных титановых сплавов
Археологи СФУ обнаружили уникальную скульптуру в Красноярском крае
Археологи СФУ обнаружили уникальную скульптуру в Красноярском крае
NatComm: Выяснилось, как транскрипция генов управляет движением в геноме
NatComm: Выяснилось, как транскрипция генов управляет движением в геноме
Челябинский химик участвовал в создании нового люминофора для диагностики рака
Челябинский химик участвовал в создании нового люминофора для диагностики рака
Палеонтологи СПбГУ обнаружили родичей европейского дракона-ольма в Казахстане
Палеонтологи СПбГУ обнаружили родичей европейского дракона-ольма в Казахстане
Колоноскопия с ИИ повышает выявляемость полипов и аденом при плановом скрининге
Колоноскопия с ИИ повышает выявляемость полипов и аденом при плановом скрининге
Ученые ЮУрГУ предложили уникальную технологию повышения надежности сварки
Ученые ЮУрГУ предложили уникальную технологию повышения надежности сварки
Бегающие от тяжелой работы зумеры полюбили бескорыстный труд в монастырях
Бегающие от тяжелой работы зумеры полюбили бескорыстный труд в монастырях
Университет Уппсалы: Потепление климата разрушает фотосинтез
Университет Уппсалы: Потепление климата разрушает фотосинтез
JPSP: Ученые рассказали, как побороть боязнь упустить что-то важное
JPSP: Ученые рассказали, как побороть боязнь упустить что-то важное

Новости компаний, релизы

Правительство Республики Казахстан пригласило МИФИ войти в совет по стратегическому партнерству в науке и образовании
Пять полезных функций смартфона, про которые редко вспоминают
ХимБиоПлюс — шанс для школьников всей России
Как человек проживает смерть родных
СПбГУ в топ-5 лучших университетов стран БРИКС по версии Ассоциации составителей рейтингов