AENM: Создан новый метод синтеза для снижения температуры спекания электролитов
Новый метод синтеза электролитов разработали учёные из Центра исследований материалов для водородной энергетики Корейского института науки и технологий KIST под руководством доктора Хо-Ил Цзи.
Он позволяет снизить температуру спекания, необходимую для уплотнения электролита в протонных керамических элементах нового поколения.
Твердооксидные элементы (SOC) могут производить электричество в режиме топливного элемента и водород в режиме электролиза. Они работают при высоких температурах свыше 600 °C, обеспечивая более высокую эффективность преобразования энергии. Но их производство стоит дорого, так как требуются материалы, выдерживающие высокие температуры. Кроме того, характеристики ТОЭ со временем ухудшаются из-за термического износа.
Недавно появились проточные керамические элементы (PCC) — устройства нового поколения для преобразования энергии. В отличие от обычных электролитов, PCC переносят более мелкие ионы водорода, обеспечивая высокую ионную проводимость.
Однако есть проблема: для получения электролита для PCC требуется спекание при температуре свыше 1 500°C. Во время этого процесса происходит испарение или осаждение компонентов, что ухудшает свойства электролита. Это основное препятствие для коммерциализации PCC.
Исследовательская группа разработала новый метод синтеза электролитных материалов, чтобы снизить температуру спекания.
Обычно электролит для протонных керамических ячеек производят путём спекания порошка из одного соединения. Но при добавлении примесей для снижения температуры спекания примеси остаются в электролите и снижают плотность мощности ячейки.
Учёные выяснили, что если синтезировать порошок из двух разных соединений с помощью низкотемпературного синтеза, то в процессе спекания образуется одно соединение с хорошими спекающими свойствами. Оно доводит реакцию до однофазного состояния. Это позволяет снизить температуру спекания до 1400 °C без добавок.
Электролит из протонной керамики, созданный по новой технологии, образует плотную мембрану даже при низких температурах. Это улучшает электрохимические свойства ячейки.
В реальных ячейках из протонной керамики этот электролит показал высокую протонную проводимость — плотность мощности 950 мВт/см² при 600 °C. Это примерно вдвое больше, чем у существующих ячеек.
Ожидается, что новый процесс позволит сократить время производства и улучшить характеристики керамических электролитов. Исследовательская группа планирует использовать этот метод для создания ячеек большой площади с целью коммерциализации протонных керамических ячеек.
Доктор Цзи из KIST сообщил, что они решили проблему хронического спекания при производстве протонных керамических ячеек.
Если получится разработать технологию большой площади, то можно будет эффективно управлять энергией: производить зелёный водород с помощью электролиза и розовый водород, используя отработанное тепло атомных электростанций.
Результаты опубликованы в Advanced Energy Materials.