Перовскитовые ячейки — новое решение для повышения эффективности солнечных панелей

Солнечные элементы на основе перовскита, широко рассматриваемые в качестве преемников доминирующих в настоящее время кремниевых элементов благодаря простоте и экономичности процесса производства в сочетании с отличными характеристиками, стали предметом глубоких исследований.

Группа ученых из Института солнечной энергии Фраунгофера ISE и физического факультета Варшавского университета представила в журнале Advanced Materials and Interfaces перовскитовые фотоэлектрические элементы со значительно улучшенными оптоэлектронными свойствами. Снижение оптических потерь в ячейках нового поколения, как показано в статье, является одной из ключевых задач для их более широкого внедрения.

За последние 20 лет фотовольтаика пережила значительное развитие, учитывая как эффективность панелей, так и установленную мощность, которая с 2000 года выросла в мире в 1000 раз. Наиболее распространенным материалом для производства фотоэлектрических панелей является кремний, однако в настоящее время ячейки на основе этого элемента приближаются к пределу своей физической эффективности. Поэтому ученые активно ищут инновационные решения, направленные на повышение эффективности ячеек и одновременно на удешевление и экологизацию производства.

Ячейки на основе перовскита отвечают обоим этим критериям, обеспечивая КПД выше 26%, простоту и экономичность производства с использованием хорошо отработанных химических методов. В настоящее время во многих научно-исследовательских институтах мира ведутся работы по повышению их эффективности и устойчивости к атмосферным воздействиям. Одной из задач, стоящих перед ними, является интеграция перовскитовых ячеек с кремниевыми при одновременном снижении потерь на отражение и паразитное поглощение.

Для минимизации этих потерь кремниевые ячейки обычно подвергаются травлению с использованием агрессивных химических реагентов, в результате чего на поверхности образуется микроскопический пирамидальный рисунок, эффективно снижающий отражение всего устройства, что позволяет увеличить ток, генерируемый устройством. К сожалению, перовскиты чувствительны ко многим химическим веществам, поэтому до сих пор использовались менее эффективные планарные антиотражающие покрытия, наносимые с помощью менее инвазивного напыления.

В исследовании, опубликованном в журнале Advanced Materials and Interfaces, ученые использовали метод наноимпринтинга для создания эффективной антиотражающей структуры с сотовидной симметрией на перовскитовом солнечном элементе. Этот метод позволяет создавать структуры нанометрового масштаба на очень больших поверхностях, превышающих 100 см².

Такой подход гарантирует масштабируемость процесса производства устройств с большой поверхностью, что крайне важно в условиях острой необходимости преобразования энергетики в сторону возобновляемых источников энергии, — говорит Мацей Краевский (Maciej Krajewski), исследователь с физического факультета Варшавского университета. Такие модифицированные образцы демонстрируют более высокую эффективность по сравнению с ячейками, в которых ранее использовались планарные антиотражающие слои.

Помимо повышения эффективности, еще одним важным результатом опубликованной работы является то, что процедура нанесения этого слоя не повреждает перовскит, что открывает возможность использования других структур, адаптированных к конкретным архитектурам ячеек. До сих пор подобные антиотражающие структуры применялись в виде отдельно приготовленных слоев, которые переносились по другому технологическому процессу, неизбежно маломасштабному и чреватому повреждением активного слоя. Использование метода прямой наноимпринтинга позволяет изготавливать все устройство в больших масштабах и по единому технологическому процессу, что крайне важно для снижения общей стоимости устройства.

Кроме того, применяемый метод совместим с тандемной конфигурацией, т.е. сочетанием кремниевых и перовскитовых ячеек, что открывает совершенно новые возможности для его применения. Следовательно, существует возможность прямого переноса этой методики на новые фотоэлектрические архитектуры, что может привести к дальнейшему повышению эффективности. Опубликованные результаты открывают путь к созданию новых фотоэлектрических устройств с выдающимися оптоэлектронными свойствами с использованием методов наноимпринтинга в их производстве.

06.10.2023


Подписаться в Telegram



Энергия

EGU: В золоте дураков все-таки нашли ценный компонент
EGU: В золоте дураков все-таки нашли ценный компонент

Не зря авиакомпании не разрешают сда...

Acta Astronautica: В открытом космосе можно построить солнечные фермы
Acta Astronautica: В открытом космосе можно построить солнечные фермы

Согласно результатам нового исследования, пров...

Ученые нашли способ очистки воды с помощью солнечной энергии
Ученые нашли способ очистки воды с помощью солнечной энергии

Использование электрохимии для разделения...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

ESCMID: Ученые разрабатывают иммунотерапию для борьбы с туберкулезом
ESCMID: Ученые разрабатывают иммунотерапию для борьбы с туберкулезом
Brain Injury: После сотрясения мозга детям сложнее заводить друзей
Brain Injury: После сотрясения мозга детям сложнее заводить друзей
Загрязнение воздуха и депрессия связаны со смертностью от сердечных заболеваний
Загрязнение воздуха и депрессия связаны со смертностью от сердечных заболеваний
Journal of the AChemSociety: Синтетика вызывает хаос в первичном бульоне
Journal of the AChemSociety: Синтетика вызывает хаос в первичном бульоне
Journal of Investigative Dermatology: Ученые готовятся покончить с запахом пота
Journal of Investigative Dermatology: Ученые готовятся покончить с запахом пота
Познакомьтесь со странной амфибией, которая выкармливает своих детенышей молоком
Познакомьтесь со странной амфибией, которая выкармливает своих детенышей молоком
Nature Neuroscience: Ученые доказали, что терпение приносит свои плоды
Nature Neuroscience: Ученые доказали, что терпение приносит свои плоды
BioDesign Research: Для производства каротиноидов разработали специальные дрожжи
BioDesign Research: Для производства каротиноидов разработали специальные дрожжи
Созданы чернила для 3D-печати гибких устройств без механических соединений
Созданы чернила для 3D-печати гибких устройств без механических соединений
EGU: 41 000 лет назад атмосферу Земли пронзили космические лучи
EGU: 41 000 лет назад атмосферу Земли пронзили космические лучи
ACS Applied Nano Materials: Наноструктуры Au-BiFeO3 сделают планету чище
ACS Applied Nano Materials: Наноструктуры Au-BiFeO3 сделают планету чище
Ученые объяснили связь между депрессией и сердечно-сосудистыми заболеваниями
Ученые объяснили связь между депрессией и сердечно-сосудистыми заболеваниями
Climate Dynamics: Вот как условия на суше влияют на муссонный климат Азии
Climate Dynamics: Вот как условия на суше влияют на муссонный климат Азии
New Phytologist: Сети прожилок на листьях появились 201 млн лет назад
New Phytologist: Сети прожилок на листьях появились 201 млн лет назад
Evolution: Островные летучие мыши одного вида эволюционируют по-разному
Evolution: Островные летучие мыши одного вида эволюционируют по-разному

Новости компаний, релизы

НАИРИТ объявит итоги Всероссийского инновационного конкурса 21 февраля
НАИРИТ объявит итоги Всероссийского инновационного конкурса 21 февраля
«Инструменты инновационного развития»
«Инструменты инновационного развития»
3 причины перехода с печатной рекламы на цифровую
3 причины перехода с печатной рекламы на цифровую
Виды резервирования серверов для задач АСУ ТП
Виды резервирования серверов для задач АСУ ТП
Выбор клиники и лечащего врача с помощью специализированного сервиса
Выбор клиники и лечащего врача с помощью специализированного сервиса