![]() |
Как морфогены в сочетании с клеточной адгезией могут создавать тканевые домены с резкой границей в модельной системе in vitro, показали исследователи из Nano Life Science Institute, WPI-NanoLSI, Университет Канадзавы. Учёные научились выращивать культуры тканей в органоиды и эмбриоиды. Это усилило интерес к тому, как контролируется рост тканей во время развития эмбриона. Известно, что рост ткани направляется диффузией сигнальных молекул — морфогенов. Но было непонятно, как их градиент приводит к появлению доменов в образующейся ткани. Сатоши Тода из Университета Канадзавы NanoLSI (сейчас Университет Осаки, Институт исследования белков), Косуке Мизуно из NanoLSI и Цуёши Хирашима из Национального университета Сингапура создали модельную систему SYMPLE3D. Она помогает понять этот процесс. Предыдущие исследования рассматривали роль морфогенов и клеточной адгезии в процессе роста тканей по отдельности. Исследователи обратили внимание на несколько недавних работ, где говорилось о том, как морфоген, участвующий в формировании нервной трубки, контролирует экспрессию белков адгезии — кадхеринов, чтобы сформировать чёткие структуры. На основе этих идей была разработана модельная система для изучения взаимодействия между морфогенами и кадхеринами. Авторы работы подчёркивают, что морфогены вызывают многочисленные изменения клеточных свойств одновременно, поэтому трудно понять, что именно происходит. Поэтому они разработали SYMPLE3D — синтетический биологический подход для изучения паттернинга тканей и создания органоидных структур. В SYMPLE3D есть два типа клеток:
На первом этапе ученые исследовали совместное культивирование секреторных и рецепторных клеток GFP. Выяснилось, что клетки imC захватывают секретируемый GFP, образуя градиент GFP. Но в этом градиенте есть эктопически активные клетки с высоким уровнем экспрессии репортёра mCherry в неподходящей позиции. Чтобы решить эту проблему, Мизуно и Тода создали GFP-ресиверные клетки, которые индуцировали слитый с mCherry E-кадхерин — молекулу клеточной адгезии. Неожиданно вместо градиента между секреторными и реципиентными клетками появился равномерно активированный тканевый домен с резкой границей. Граница была устойчива к изменениям условий роста. Они сосредоточились на механизме формирования паттерна при сочетании молекулярного градиента и E-кадхерина в своей модельной системе. Наблюдая за ростом ткани в реальном времени, они увидели, как активированные клетки-приёмники GFP, сконструированные для синтеза E-кадхерина, который был объединён с mCherry, сначала были рассеяны, а потом объединились. Затем активные клетки постепенно поглощались этим доменом. В результате появилась чёткая граница между положительным и отрицательным доменами mCherry. Они также отметили особенность распределения E-cadherin-mCherry: оно было равномерным по всей активной области, в то время как GFP распределялся с градиентом. Исследователи проанализировали поведение клеток, которые экспрессировали разные уровни E-кадхерина в ответ на разное количество GFP. Оказалось, что поведение было одинаковым независимо от уровня E-кадхерина. Клетки, которые производят определённое количество E-кадхерина, могут смешиваться и образовывать единую популяцию независимо от уровня экспрессии. Клетки с разными уровнями E-кадхерина смешивались в градиенте GFP. Это позволяло клеткам получать GFP равномерно, а уровень экспрессии E-кадхерина становился высоким в области синтетической ткани. Математическая модель, разработанная Хирашимой, подтвердила экспериментальные наблюдения. Она основана на движении клеток, регулируемом энергией адгезии. Авторы пришли к выводу, что можно запрограммировать новый тканевый домен с чёткими границами в органоидах, сочетая синтетические морфогены с контролем клеточной адгезии. Результаты опубликованы в EMBO Reports. 08.10.2024 |
Нано
![]() | |
Электрические нановорота: как ученые научились управлять молекулами | |
Ученые из Университета Осаки создали крош... |
![]() | |
Казанские ученые научились «готовить» наноалмазы в плазме | |
Ученые придумали умную математическую модель, ... |
![]() | |
Созданы новые подложки для культивирования клеток на основе анодного глинозема | |
Наноструктурированные поверхности из глин... |
![]() | |
Nano Letters: Валлитроника открывает новые возможности обработки данных | |
Транспорт электронов в двухслойном графен... |
![]() | |
Новый материал для электроники будущего: фосфид ниобия может изменить технологии | |
По мере того как компьютерные чипы станов... |
![]() | |
ES&T: Наномембрана со смешанным зарядом — инновация в очистке сточных вод | |
Исследовательская группа под руководством... |
![]() | |
Nano Letters: Новая технология поможет лучше понять мир на молекулярном уровне | |
С 1950-х годов ученые используют радиоволны дл... |
![]() | |
NatPhot: Новый шаг к революции в обработке данных — люминесцентные нанокристаллы | |
Ученые, в том числе исследователь хи... |
![]() | |
Свет — повелитель молекул: ученые совершили прорыв в химии | |
Ученые из Болонского университета под&nbs... |
![]() | |
Наночастицы селена помогут укрепить иммунитет и защитить сердце | |
Ученые создали наночастицы селена, которые мож... |
![]() | |
Студенты из Самары создали новое антимикробное покрытие для ткани | |
Студенты из университета имени Королева в... |
![]() | |
Живые «таймеры»: как молекулярные механизмы помогают организмам измерять время | |
Живые организмы следят за временем и ... |
![]() | |
Наносистема доставки молекул предвещает безопасную эру в разработке лекарств | |
Инновационную систему доставки лекарств, облад... |
![]() | |
JPC: Нанопузырьки совершат прорыв в эффективности химических реакций | |
Газы необходимы для многих химических реа... |
![]() | |
Сенсоры нового поколения: как молодые ученые ТулГУ приближают будущее медицины | |
Новые материалы, которые могут помочь в с... |
![]() | |
Nano Letters: Ученые научились делать нанотрубки, направленные в одну сторону | |
Впервые создали нанотрубки из дисульфида ... |
![]() | |
В Красноярске открыт новый двумерный материал из семейства валлериита | |
Ученые из Красноярска создали новый матер... |
![]() | |
AnChem: Открыт новый метод создания и усиления магнетизма в двумерных материалах | |
При толщине всего в несколько атомов двум... |
![]() | |
BiomatResearch: Наноразмерный анализ показал способ предотвращения эрозии зубов | |
Корейская исследовательская группа, которая ра... |
![]() | |
Золото в новом формате: ученые создали двумерные монослои золота для катализа | |
Исследователи создали почти отдельно стоящие н... |
![]() | |
В Сколтехе спроектировали датчик для обнаружения вредных веществ в воздухе | |
В Сколтехе разработали новый датчик, который м... |
![]() | |
Инженер придумал, как повысить чувствительность нанопор для обнаружения болезней | |
Новую технику в области нанотехнологий дл... |
![]() | |
В СПбГУ создали нанолисты цинка для систем очистки воды | |
Новый способ создания особых наночастиц нашли ... |
![]() | |
В СибГМУ снарядили против рака магнитные наночастицы | |
Ученые из Сибирского государственного мед... |
![]() | |
Как графен может изменить вашу жизнь: от питьевой воды до тепла в доме | |
Жидкости с добавлением графена высыхают п... |
![]() | |
Система доставки на основе экстракта семян нима повышает эффект нанопестицидов | |
Как сделать пестициды более эффективными и&nbs... |
![]() | |
Science Robotics: С помощью ДНК-оригами можно создавать медицинских роботов | |
Важное открытие в области молекулярной ро... |
![]() | |
В ТПУ научились управлять свойствами графена с помощью лазера | |
Как можно восстанавливать оксид графена с ... |
![]() | |
Ученые научились производить заживляющие наночастицы в промышленных масштабах | |
Новый метод производства специальных растворов... |
![]() | |
JACS: Открыт новый тип наночастиц гидрида палладия, которые запирают водород | |
Палладий — это редкий металл, ... |