Гексагональные перовскиты — новое слово в технологии топливных элементов

Это исследование представляет собой значительное достижение в области технологии топливных элементов.

Исследователи из Tokyo Tech обнаружили, что гексагональные оксиды Ba5R2Al2SnO13 (R — редкоземельный металл) обладают высокой протонной проводимостью и термической стабильностью. Благодаря своей кристаллической структуре и большому количеству кислородных вакансий эти материалы могут полностью гидратироваться и обеспечивать высокую диффузию протонов. Это делает их идеальными кандидатами для использования в качестве электролитов в протонных керамических топливных элементах нового поколения, которые могут работать при средних температурах без ухудшения характеристик.

Топливные элементы — это экологичный способ получения энергии. В них водород и кислород соединяются, в результате чего образуется электричество, а на выходе получаются только вода и тепло.

Топливный элемент состоит из анода, катода и электролита. Газообразный водород подаётся на анод, где он расщепляется на протоны и электроны. Электроны создают электрический ток, а протоны через электролит попадают к катоду, где соединяются с кислородом и образуют воду.

Большинство топливных элементов — это твердооксидные топливные элементы (SOFC). В них в качестве электролита используются оксидные ионные проводники. Однако у SOFC есть проблема: со временем они деградируют из-за высоких рабочих температур. Сейчас учёные исследуют протонный керамический топливный элемент (ПКТЭ), в котором применяется электролит из протонопроводящей керамики.

Такие топливные элементы могут работать при промежуточных, более приемлемых температурах 200-500 °C. Однако поиск подходящих материалов, обладающих одновременно высокой протонной проводимостью и химической стабильностью при таких промежуточных температурах, остается сложной задачей.

В исследовании, опубликованном в Journal of the American Chemical Society, ученые под руководством профессора Масатомо Яшимы из Токийского технологического института (Tokyo Tech) в сотрудничестве с исследователями из Университета Тохоку (Tohoku University) совершили значительный прорыв. Они определили химически стабильные гексагональные перовскитные оксиды Ba5R2Al2SnO13 (где R — редкоземельные металлы Gd, Dy, Ho, Y, Er, Tm и Yb) как перспективные электролитные материалы с высокой протонной проводимостью почти 0,01 S см-¹, что значительно выше, чем у других протонных проводников при температуре около 300 оС.

В этой работе мы обнаружили один из самых высоких показателей протонной проводимости среди керамических протонных проводников: новый гексагональный оксид Ba5Er2Al2SnO13, связанный с перовскитом, который станет прорывом для разработки быстрых протонных проводников, — говорит Яшима.

Высокая протонная проводимость материала объясняется полной гидратацией в материале с высоким дефицитом кислорода и уникальной кристаллической структурой. Структуру можно представить как укладку октаэдрических слоев и кислородно-дефицитных гексагональных близкоупакованных слоев AO3-δ (h') (A — крупный катион, такой как Ba²⁺, а δ — количество кислородных вакансий). При гидратации эти вакансии полностью заполняются оксигенами из молекул воды, образуя гидроксильные группы (OH-), высвобождая протоны (H⁺), которые мигрируют через структуру, повышая проводимость.

В своем исследовании ученые синтезировали Ba5Er2Al2SnO13 (BEAS) с помощью твердофазных реакций. Материал содержал большое количество кислородных вакансий (δ = 0,2) и демонстрировал фракционное поглощение воды, равное 1, что указывает на его способность к полной гидратации. При испытаниях его проводимость во влажной азотной среде оказалась в 2 100 раз выше, чем в сухой азотной среде при температуре 356 °C. При полной гидратации проводимость составила 0,01 С см-¹ при температуре 303 °C.

Кроме того, расположение атомов в октаэдрических слоях обеспечивает пути для миграции протонов, что еще больше увеличивает протонную проводимость. При моделировании Ba5Er2Al2SnO13-H2O исследователи изучили движение протонов в суперячейке кристаллической структуры 2×2×1, представленной Ba40Er16Al16Sn8O112H16. Эта структура включала два h' слоя и два октаэдрических слоя. Исследователи обнаружили, что в октаэдрическом слое наблюдаются миграции протонов на большие расстояния, что свидетельствует о быстрой диффузии протонов.

Высокая протонная проводимость BEAS объясняется высокой концентрацией протонов и коэффициентом диффузии, — объясняет Яшима.

Помимо высокой проводимости, материал также химически стабилен при рабочих температурах PCFC. При отжиге материала во влажной атмосфере кислорода, воздуха, водорода и CO2 при температуре 600 °C исследователи не заметили изменений в его составе и структуре, что свидетельствует о прочной стабильности материала и его пригодности для длительной работы без деградации.

Эти результаты открывают новые возможности для создания протонных проводников. Высокая протонная проводимость за счет полной гидратации и быстрой миграции протонов в октаэдрических слоях в сильно дефицитных по кислороду гексагональных перовскитных материалах станет эффективной стратегией для разработки протонных проводников нового поколения, — говорит Яшима.

Благодаря своим исключительным свойствам этот материал может привести к созданию эффективных, долговечных и низкотемпературных топливных элементов.

08.07.2024

Подписаться: Телеграм | Дзен | Вконтакте


Энергия

Новый метод увеличил емкость аккумуляторов на 60%
Новый метод увеличил емкость аккумуляторов на 60%

Спрос на батареи, которые запасают больше...

Ученые улучшили производство водорода
Ученые улучшили производство водорода

Ученые из Университета Оклахомы совершили...

Корейские ученые нашли замену опасным аккумуляторам
Корейские ученые нашли замену опасным аккумуляторам

Современная энергетика активно переходит на&nb...

Как Европа планирует коммерциализировать термоядерный синтез
Как Европа планирует коммерциализировать термоядерный синтез

Милена Роведа, председатель Европейской ассоци...

Новое покрытие делает солнечные батареи эффективнее
Новое покрытие делает солнечные батареи эффективнее

Плоские кремниевые солнечные панели превращают...

PWR, BWR, PHWR – разбираемся, кто есть кто в мире ядерных реакторов
PWR, BWR, PHWR – разбираемся, кто есть кто в мире ядерных реакторов

Современная ядерная энергетика использует разл...

Не кочевать же с дизелем: как плавучие АЭС меняют правила игры
Не кочевать же с дизелем: как плавучие АЭС меняют правила игры

Современная энергетика сталкивается с нов...

Как устроены самые мощные ядерные реакторы планеты
Как устроены самые мощные ядерные реакторы планеты

Атомная энергетика остается одним из ключ...

Испытание солнцем: вольфрам держит удар термоядерной плазмы
Испытание солнцем: вольфрам держит удар термоядерной плазмы

В лабораториях голландского института DIFFER у...

Ученые создали генератор энергии для пчел весом 46 мг
Ученые создали генератор энергии для пчел весом 46 мг

Ученые из Пекинского технологического инс...

Как солнечные панели и сельское хозяйство могут работать вместе
Как солнечные панели и сельское хозяйство могут работать вместе

Солнечные панели и сельское хозяйство час...

Энергия звезд может заменить уголь и газ
Энергия звезд может заменить уголь и газ

Карл Тишлер из европейского консорциума п...

Не проливайте даром: ученые нашли применение дождевой воде
Не проливайте даром: ученые нашли применение дождевой воде

Когда два материала соприкасаются, заряже...

Кувырок перед прыжком: почему вода сопротивляется расщеплению
Кувырок перед прыжком: почему вода сопротивляется расщеплению

Ученые нашли причину, почему расщепление воды ...

Метанол на стероидах: ученые нашли способ разогнать реакцию
Метанол на стероидах: ученые нашли способ разогнать реакцию

Замена традиционного ископаемого топлива на&nb...

Термоядерный пылесос: как и зачем ученые следят за отходами плазмы
Термоядерный пылесос: как и зачем ученые следят за отходами плазмы

В МИФИ создали систему, которая будет собирать...

Поиск на сайте

ТОП - Новости мира, инновации

Как технологии помогают благотворительности
Как технологии помогают благотворительности
Как метавселенные меняют нашу психику
Как метавселенные меняют нашу психику
CBDC — не крипта, но играть будет по своим правилам
CBDC — не крипта, но играть будет по своим правилам
От редактирования ДНК до колонизации Марса: главные технологии XXI века
От редактирования ДНК до колонизации Марса: главные технологии XXI века
Мозг на паузе: ученые научились отключать нейронные связи и включать их обратно
Мозг на паузе: ученые научились отключать нейронные связи и включать их обратно
Ловкость волн и никаких проводов: прорыв в фотонных вычислениях
Ловкость волн и никаких проводов: прорыв в фотонных вычислениях
Новый метод увеличил емкость аккумуляторов на 60%
Новый метод увеличил емкость аккумуляторов на 60%
Как ехидны выращивают детенышей в бактериальном коконе
Как ехидны выращивают детенышей в бактериальном коконе
Город в термосе: как охладить асфальт и укротить ливни
Город в термосе: как охладить асфальт и укротить ливни
Танцы в воде: зачем фламинго топчутся и щелкают клювами
Танцы в воде: зачем фламинго топчутся и щелкают клювами
Биологи включили турбо-режим для бактериальной эволюции
Биологи включили турбо-режим для бактериальной эволюции
Создан язык, который вытаскивает токсины из цифрового шума
Создан язык, который вытаскивает токсины из цифрового шума
Невидимые горы: почему пляжные дюны появляются за минуты и исчезают навсегда
Невидимые горы: почему пляжные дюны появляются за минуты и исчезают навсегда
Дикие шимпанзе не знают, что такое трудное детство
Дикие шимпанзе не знают, что такое трудное детство
Морщины на пальцах от воды — как отпечатки: уникальны и неизменны
Морщины на пальцах от воды — как отпечатки: уникальны и неизменны

Новости компаний, релизы

Пробирки, зелень и взрывы: фестиваль для тех, кто любит науку
Бактерии против грибов: как наука защищает картофель без химии
Овцы вместо мышей: как ученые нашли новый способ тестировать материалы для зубов
Ход конем: в Шагонаре прошел первый шахматный турнир для дошколят
Как СПбГУ готовит инженеров для нефтегазовой отрасли — опыт БРИКС