Chem: Имплантируемые батареи могут работать на собственном кислороде организма
Имплантируемые медицинские устройства — от кардиостимуляторов до нейростимуляторов — полагаются на батарейки, чтобы поддерживать сердце в ритме и гасить боль. Но батареи со временем разряжаются, и для их замены требуются инвазивные операции.

Чтобы решить эти проблемы, ученые из Китая разработали имплантируемую батарею, которая работает на кислороде в организме. Исследование, опубликованное 27 марта в журнале Chem, демонстрирует на крысах, что концептуальная разработка может обеспечивать стабильную энергию и совместима с биологической системой.
Если задуматься, кислород — это источник нашей жизни, — говорит автор работы Ксижэнь Лю, специализирующийся на энергетических материалах и устройствах в Тяньцзиньском технологическом университете.
Если мы сможем использовать непрерывное поступление кислорода в организм, срок службы батареи не будет ограничен ограничен ограниченными материалами обычных батарей.
Чтобы создать безопасную и эффективную батарею, исследователи изготовили электроды из сплава на основе натрия и нанопористого золота — материала с порами в тысячи раз меньше ширины волоса. Золото известно своей совместимостью с живыми системами, а натрий — важный и повсеместно распространенный элемент в человеческом организме. Электроды вступают в химические реакции с кислородом в организме и вырабатывают электричество. Чтобы защитить батарею, исследователи заключили ее в пористую полимерную пленку, которая отличается мягкостью и гибкостью.
Затем исследователи имплантировали батарею под кожу на спине крыс и измерили выработку электричества. Спустя две недели они обнаружили, что батарея способна вырабатывать стабильное напряжение в диапазоне от 1,3 до 1,4 В, а максимальная плотность мощности составляет 2,6 мкВт/с м² . Хотя мощности недостаточно для питания медицинских устройств, конструкция показывает, что использование кислорода в организме для получения энергии возможно.
Команда также оценила воспалительные реакции, метаболические изменения и регенерацию тканей вокруг батареи. У крыс не было обнаружено явного воспаления. Побочные продукты химических реакций батареи, включая ионы натрия, гидроксид-ионы и низкий уровень перекиси водорода, легко метаболизировались организмом и не влияли на почки и печень. Крысы хорошо заживали после имплантации, а шерсть на их спине полностью отрастала через четыре недели. К удивлению исследователей, кровеносные сосуды также регенерировали вокруг батареи.
Мы были озадачены нестабильной выработкой электроэнергии сразу после имплантации, — говорит Лю.
Оказалось, что нужно дать ране время зажить, чтобы кровеносные сосуды восстановились вокруг батареи и снабдили ее кислородом, прежде чем батарея сможет стабильно вырабатывать электричество. Это удивительное и интересное открытие, потому что оно означает, что батарея может помочь в мониторинге заживления ран.
В дальнейшем команда планирует повысить энергоотдачу батареи, изучив более эффективные материалы для электродов и оптимизировав структуру и дизайн батареи. Лю также отметил, что батарею легко масштабировать в производстве, а выбор экономичных материалов может еще больше снизить цену. Батарея, созданная командой, может найти и другое применение, помимо питания медицинских устройств.
Поскольку опухолевые клетки чувствительны к уровню кислорода, имплантация вокруг них батареи, потребляющей кислород, может помочь в борьбе с раковыми опухолями. Также можно преобразовать энергию батареи в тепло, чтобы убить раковые клетки, — говорит Лю.
От нового источника энергии до потенциальных биотерапевтических средств — перспективы этой батареи захватывающие.
Иллюстрация: Chem/Lv et al.



















