Наноразмерные транзисторы позволят проводить чувствительные исследования в клетках

Биопробы предполагают первые внутриклеточные измерения с помощью полупроводникового устройства.

Химики и разработчики из Гарвардского университета сконструировали из нанопроводов новый тип транзисторов V-формы и достаточного размера, чтобы их можно было использовать для чувствительного исследования внутри клеток.

Новое устройство, описанное в издании Science, меньше чем большинство вирусов и шириной в сто раз меньше привычных зондов сейчас используется для клеточных измерений.

«Применение нами наноразмерных транзисторов с полевым эффектом или nanoFETs представляет новый метод внутриклеточных исследований и первое в своем роде внутриклеточное измерение с помощью полупроводникового устройства», сообщил старший автор работы Чарльз Либер, профессор химии. «NanoFETs — первые инновационный электронные измерительные приборы для внутриклеточных исследований с 1960-х».

Либер с коллегами сообщили, что nanoFETs могут использоваться для измерения потока ионов или электрических сигналов в клетках, в особенности нейронов. Устройства могут быть оснащены рецепторами или лигандами для анализа наличия индивидуальных биохимикатов в пределах клеток.

Человеческие клетки могут быть разного размера: от 10 микронов (миллионная доля метра) — нервные клетки, до 50 микронов — сердечные клетки. И в то время как сегодня в основном применяются частицы до 5 микронов в диаметре, nanoFETs на несколько порядков меньше: от 50 нанометров (миллиардная доля метра) в длину до всего 15 нанометров в диаметре.

Помимо небольшого размера легкое внедрение nanoFETs в клетку обуславливают еще две особенности. Во-первых, Либер с коллегами выяснили, покрытие частиц двойным слоем фосфолипида — вещества, идентичного тому, из которого состоят клеточные мембраны — устройства легко попадают внутрь клетки вследствие так называемого мембранного слияния, то есть процесса, с которым в клетку обычно проникают вирусы и бактерии.

«Эта особенность избавляет нас от необходимости проталкивать nanoFETs в клетку, так как по существу они сами неплохо в нее проникают», заявил Либер. «Это также означает, что имплантация nanoFETs не травмирует клетку, как это бывает в процессе подобных современных исследований. Мы выяснили, что nanoFETs можно многократно внедрять и извлекать из клетки без какого-либо вреда для живой структуры».

Во-вторых, текущее исследование строится на предыдущей работе Либера с коллегами относительно введения треугольных стереоцентров — жестких шарнирных соединений в 120-градусной развертке — в нанотрубки, структуры, которые до тех пор были только линейными. Эти стереоцентры, аналогичные химическим центрам в составе множества сложных органических молекул преобразовывают 1-d наноструктуры в более сложные формы.

Либер с соавторами выяснили, что два 120-градусных соединения в соответствующей цис-конфигурации формируют один 60-градусный угол V-формы, предпочтительный для двулучевой nanoFET с датчиком на конце V. Два луча можно соединить с проводами, чтобы пустить ток сквозь наноразмерный транзистор.

Химики и разработчики из Гарвардского университета сконструировали из нанопроводов новый тип транзисторов V-формы и достаточного размера, чтобы их можно было использовать для чувствительного исследования внутри клеток.

Новое устройство, описанное в издании Science, меньше чем большинство вирусов и шириной в сто раз меньше привычных зондов сейчас используется для клеточных измерений.

«Применение нами наноразмерных транзисторов с полевым эффектом или nanoFETs представляет новый метод внутриклеточных исследований и первое в своем роде внутриклеточное измерение с помощью полупроводникового устройства», сообщил старший автор работы Чарльз Либер, профессор химии. «NanoFETs — первые инновационный электронные измерительные приборы для внутриклеточных исследований с 1960-х».

Либер с коллегами сообщили, что nanoFETs могут использоваться для измерения потока ионов или электрических сигналов в клетках, в особенности нейронов. Устройства могут быть оснащены рецепторами или лигандами для анализа наличия индивидуальных биохимикатов в пределах клеток.

Человеческие клетки могут быть разного размера: от 10 микронов (миллионная доля метра) — нервные клетки, до 50 микронов — сердечные клетки. И в то время как сегодня в основном применяются частицы до 5 микронов в диаметре, nanoFETs на несколько порядков меньше: от 50 нанометров (миллиардная доля метра) в длину до всего 15 нанометров в диаметре.

Помимо небольшого размера легкое внедрение nanoFETs в клетку обуславливают еще две особенности. Во-первых, Либер с коллегами выяснили, покрытие частиц двойным слоем фосфолипида — вещества, идентичного тому, из которого состоят клеточные мембраны — устройства легко попадают внутрь клетки вследствие так называемого мембранного слияния, то есть процесса, с которым в клетку обычно проникают вирусы и бактерии.

«Эта особенность избавляет нас от необходимости проталкивать nanoFETs в клетку, так как по существу они сами неплохо в нее проникают», заявил Либер. «Это также означает, что имплантация nanoFETs не травмирует клетку, как это бывает в процессе подобных современных исследований. Мы выяснили, что nanoFETs можно многократно внедрять и извлекать из клетки без какого-либо вреда для живой структуры».

Во-вторых, текущее исследование строится на предыдущей работе Либера с коллегами относительно введения треугольных стереоцентров — жестких шарнирных соединений в 120-градусной развертке — в нанотрубки, структуры, которые до тех пор были только линейными. Эти стереоцентры, аналогичные химическим центрам в составе множества сложных органических молекул преобразовывают 1-d наноструктуры в более сложные формы.

Либер с соавторами выяснили, что два 120-градусных соединения в соответствующей цис-конфигурации формируют один 60-градусный угол V-формы, предпочтительный для двулучевой nanoFET с датчиком на конце V. Два луча можно соединить с проводами, чтобы пустить ток сквозь наноразмерный транзистор.

16.08.2010


Подписаться в Telegram



Нано

Nano Letters: Валлитроника открывает новые возможности обработки данных
Nano Letters: Валлитроника открывает новые возможности обработки данных

Транспорт электронов в двухслойном графен...

Свет — повелитель молекул: ученые совершили прорыв в химии
Свет — повелитель молекул: ученые совершили прорыв в химии

Ученые из Болонского университета под&nbs...

Наночастицы селена помогут укрепить иммунитет и защитить сердце
Наночастицы селена помогут укрепить иммунитет и защитить сердце

Ученые создали наночастицы селена, которые мож...

В СПбГУ создали нанолисты цинка для систем очистки воды
В СПбГУ создали нанолисты цинка для систем очистки воды

Новый способ создания особых наночастиц нашли ...

В СибГМУ снарядили против рака магнитные наночастицы
В СибГМУ снарядили против рака магнитные наночастицы

Ученые из Сибирского государственного мед...

В ТПУ научились управлять свойствами графена с помощью лазера
В ТПУ научились управлять свойствами графена с помощью лазера

Как можно восстанавливать оксид графена с ...

PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене
PRL: Физики объяснили, как работает дробный заряд в пентаслойном графене

К разгадке, почему электроны могут разделяться...

FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее
FRI: Нанокапсулы с антоцианами делают привычные продукты полезнее

В ходе исследования ученые обнаружили, что&nbs...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Ученые исследовали температурные изменения в грунтах под зданиями Салехарда
Ученые исследовали температурные изменения в грунтах под зданиями Салехарда
Новый экологически безопасный реагент поможет с разливами нефти в Арктике
Новый экологически безопасный реагент поможет с разливами нефти в Арктике
Российские ученые доказали теорию акустической турбулентности
Российские ученые доказали теорию акустической турбулентности
NatComm: Ученые объяснили противораковый и противомалярийный эффект губки
NatComm: Ученые объяснили противораковый и противомалярийный эффект губки
Oxford Journal of Archaeology: Обнаружена древнейшая в мире трехмерная карта
Oxford Journal of Archaeology: Обнаружена древнейшая в мире трехмерная карта
NTR: Курящие люди зарабатывают меньше некурящих при прочих равных
NTR: Курящие люди зарабатывают меньше некурящих при прочих равных
TheInnovator: Роботы с искусственным интеллектом изменят рынок труда
TheInnovator: Роботы с искусственным интеллектом изменят рынок труда
Мировой рынок фаготерапии достигнет $116 млн к 2028 году
Мировой рынок фаготерапии достигнет $116 млн к 2028 году
NatComm: Выяснилось, как волны разгоняют частицы до экстремальных скоростей
NatComm: Выяснилось, как волны разгоняют частицы до экстремальных скоростей
MIT: Мертвая звезда на краю черной дыры ускоряет рентгеновские вспышки
MIT: Мертвая звезда на краю черной дыры ускоряет рентгеновские вспышки
JEST: Ученые разрабатывают литий-ионную батарею с повышенными характеристиками
JEST: Ученые разрабатывают литий-ионную батарею с повышенными характеристиками
CANCER: Ожирение сокращает годы жизни у детей с онкологией
CANCER: Ожирение сокращает годы жизни у детей с онкологией
Пробелы на мировой карте биоразнообразия заполнили благодаря данным ученых СССР
Пробелы на мировой карте биоразнообразия заполнили благодаря данным ученых СССР
В ТПУ синтезировали гель для предотвращения послеоперационных инфекций
В ТПУ синтезировали гель для предотвращения послеоперационных инфекций
Экологически чистые установки: Британия ведет автопром к зеленой революции
Экологически чистые установки: Британия ведет автопром к зеленой революции

Новости компаний, релизы

Университет Иннополис открыл колледж для подготовки ИТ-специалистов и робототехников
МФТИ подготовил более 140 специалистов в области синхротронных и нейтронных исследований
Российские стартаперы переосмысливают химическое производство
Ученые ПНИПУ повысили точность оценки состояния авиадвигателя с помощью ИИ
Ученые Державинского университета обсудили совершенствование педагогического образования