Нейросети как люди — учатся всю жизнь

28.02.20233520

Нейронные сети или нейросети, а еще искусственные нейронные сети или нейронки — это подстраивающиеся системы, которые обучаются с помощью взаимосвязанных узлов или нейронов в слоистой структуре, похожей на головной мозг человека.

Нейросети как люди — учатся всю жизнь

Нейронные сети обучаются на основе данных и после должной тренировки способны распознавать закономерности, классифицировать данные и предсказывать будущие события.

Нейронки анализируют поступающие данные и делят их на уровни. Их можно обучать с помощью различных парадигм, чтобы нейронки могли, например, различать повторяющиеся образцы в вербалике или на картинках так же, как мыслительный орган человека. Характер работы нейронной сети определяется взаимосвязью отдельных элементов и силой связей (весами). Эти веса автоматически регулируются, пока нейронка учится, причем все развивается по определенным правилам, чтобы искусственная нейронка могла корректно сделать то, что от нее требуется.

Почему нейросети так важны

Нейронки — это, по сути, особый подход к машинному обучению, который реализовали по образу и подобию того, как действуют обычные человеческие нейроны, передавая друг другу сигналы. Нейронки особенно хороши в моделирования нелинейных связей, и зачастую их используют для распознавания визуальной информации с разделением и упорядочиванием объектов или сигналов в речевых, зрительных и других системах.

Вот несколько примеров того, как нейронные сети используются в приложениях машинного обучения:

  • семантически сегментируют изображения и видео;
  • обнаруживают объекты на изображениях, включая пешеходов и велосипедистов;
  • обучают двуногого робота ходьбе с помощью тренировки с усилением;
  • выявляют рак, помогая патологоанатомам классифицировать опухоли как доброкачественные или злокачественные на основе однородности размера клеток, толщины глыбок, митоза и других факторов.

Нейроннки, особенно глубинные их разновидности, стали известны благодаря своей способности решать сложные задачи по идентификации, такие как распознавание лиц, перевод текста и распознавание голоса. Эти подходы являются ключевой технологией, стимулирующей инновации в передовых системах помощи водителю и задачах, включая классификацию полос движения и распознавание дорожных знаков.

Как работают нейросети

Созданная по образу и подобию живых нервных систем, нейронка объединяет несколько слоев обработки, используя простые элементы, работающие параллельно. Сеть состоит из входного слоя, одного или нескольких скрытых слоев и выходного слоя. В каждом слое есть несколько узлов, или нейронов, и узлы каждого слоя используют в качестве входов выходы всех узлов предыдущего слоя, так что все нейроны связаны друг с другом через различные слои. Каждому нейрону обычно присваивается вес, который регулируется в процессе обучения, и уменьшение или увеличение веса изменяет силу сигнала этого нейрона.

Как и в случае с другими алгоритмами машинного обучения, нейронки можно использовать для контролируемого обучения (классификация, регрессия) и неконтролируемого обучения (распознавание образов, кластеризация).

Параметры модели устанавливаются путем взвешивания нейронки с помощью «обучения» на специальных тренировочных данных, обычно путем оптимизации весов для минимизации ошибки предсказания.

Типы нейросетей

Первой и самой простой нейронной сетью был перцептрон, который представил Фрэнк Розенблатт в 1958 году. Эта сеть состояла из одного нейрона и по сути представляла собой модель линейной регрессии с сигмоидной функцией активации. С тех пор ученые исследуют все более сложные нейронные сети, что привело к появлению современных глубинных сетей, которые могут содержать сотни слоев.

Глубокое обучение относится к нейронным сетям с большим количеством слоев, в то время как нейронные сети, имеющие только два или три слоя связанных нейронов, также известны как неглубокие нейронные сети. Глубокое обучение стало популярным, поскольку оно устраняет необходимость извлечения признаков из изображений, что ранее затрудняло применение машинного обучения для обработки изображений и сигналов. Однако, хотя извлечение признаков можно не использовать в приложениях для обработки изображений, его по-прежнему часто применяют в той или иной форме в задачах обработки сигналов для повышения точности модели.

Типы нейронных сетей, обычно используемых для разрабатываемых приложений, включают:

  1. Нейронная сеть с обратной связью. Состоит из входного слоя, одного или нескольких скрытых слоев и выходного слоя (типичная неглубокая нейронная сеть).
  2. Конволюционная нейронная сеть. Архитектура глубокой нейронной сети, широко применяемая для обработки изображений и характеризующаяся конволюционными слоями, которые смещают окна по входу с узлами, имеющими общие веса, абстрагируя входные данные (обычно изображения) в карты признаков.
  3. Рекуррентная нейронная сеть. Архитектура нейронной сети с контурами обратной связи, моделирующая последовательные зависимости на входе, как во временных рядах, сенсорных и текстовых данных; наиболее популярным типом является сеть с долговременной кратковременной памятью.

Подписаться: Телеграм | Дзен | Вконтакте


Net&IT

Почему нейросети до сих пор не понимают, что творят
Почему нейросети до сих пор не понимают, что творят

Триллионы параметров, миллиарды вычислений&nbs...

Российские ИИ и 3D-принтеры победили на конкурсе БРИКС
Российские ИИ и 3D-принтеры победили на конкурсе БРИКС

Российские стартапы доказали, что могут к...

Ученые СПбГУ упростили расчеты для стабильной связи
Ученые СПбГУ упростили расчеты для стабильной связи

Представьте, что ваш телефон внезапн...

Невидимый хвост: почему чистка куки не спасает от слежки
Невидимый хвост: почему чистка куки не спасает от слежки

Вы чистите куки и думаете, что тепер...

Ученые изобрели способ записывать информацию во льду
Ученые изобрели способ записывать информацию во льду

Вместо облачных технологий — ледяны...

Чем рискуют ученые, доверяя ИИ свои статьи
Чем рискуют ученые, доверяя ИИ свои статьи

Ошибка алгоритма может стоить исследователю ре...

От 5G до квантов: как сети учатся выживать в мире перегрузок
От 5G до квантов: как сети учатся выживать в мире перегрузок

Иногда один оборванный кабель оставляет целую ...

Ученые нашли способ уменьшить нейросети без потери качества
Ученые нашли способ уменьшить нейросети без потери качества

Глубокое обучение напоминает бардак в шка...

Новый чип ускоряет обработку сигналов в 100 раз
Новый чип ускоряет обработку сигналов в 100 раз

Обычный ИИ тратит на анализ сигналов...

Ученые создали идеальный генератор чисел
Ученые создали идеальный генератор чисел

Что, если случайность — не&nbs

Надежно как в ДНК: когда данные начнут жить тысячелетиями
Надежно как в ДНК: когда данные начнут жить тысячелетиями

Жесткие диски выходят из строя а мол...

ИИ помогает неопытным таксистам работать наравне с профи
ИИ помогает неопытным таксистам работать наравне с профи

Таксисты в Японии случайно доказали, что&...

Как ИИ меняет бизнес и творческие профессии
Как ИИ меняет бизнес и творческие профессии

Споры о том, заменит ли ИИ люде...

Успешно испытан ИИ для диагностики кожных заболеваний
Успешно испытан ИИ для диагностики кожных заболеваний

Представьте инструмент, который замечает рак&n...

Поиск на сайте

ТОП - Новости мира, инновации

Новости компаний, релизы

ITPOD обновил номенклатуру серверов — разбираем обозначения
Автономные дроны без веб-интерфейса: просто API и никаких сложностей
Как учат инноваторов: новый подход Московского Политеха
Стажировка на Казанском вертолетном заводе – как студенты осваивали авиастроение
Как Самолет ускорил работу девелоперов в 7 раз