![]() |
Новое исследование изменит производство традиционных редкоземельных магнитов, заменив дорогостоящие и энергоемкие производственные процессы. С помощью аддитивного производства, известного как 3D-печать, Радхика Баруа (на фото), доктор философии, доцент кафедры механической и ядерной инженерии Virginia Commonwealth University, создаст высокопроизводительные магниты для бытовой и промышленной электроники. Ее исследования направлены на снижение производственных затрат, минимизацию энергопотребления и ограничение воздействия на окружающую среду, поэтому ее работа может найти применение и в технологиях возобновляемых источников энергии, таких как ветряные турбины и электромобили. Лазеры, «печатающие» нанокомпозитные сплавыИспользуя концентрированное тепло лазера для расплавления металла, Баруа применяет форму аддитивного производства под названием прямое энергетическое осаждение (DED). Материал, «напечатанный» с помощью DED, может быть сформирован в сложную геометрию в расплавленном состоянии, что идеально подходит для создания точных, индивидуальных компонентов. Процессы направленного энергетического осаждения генерируют и управляют высокой тепловой энергией, которая может нагревать материалы до температур, значительно превышающих их точки плавления. В зависимости от обрабатываемого сплава температура часто превышает 1000°C. Скорость охлаждения, достигаемая с помощью DED, имеет решающее значение для формирования микроструктуры и может варьироваться от 1000 до 100 000 градусов Цельсия в секунду в зависимости от стратегии сканирования (схема и последовательность, в которой печатается металлический сплав), настроек мощности и свойств материала.
Нанокомпозитные магниты состоят из наноразмерных зерен, каждое из которых имеет размер всего в несколько миллиардных долей метра и проявляет различные магнитные свойства. Границы раздела между этими зернами, называемые границами зерен, играют ключевую роль в определении общей силы и эффективности магнита. Правильно выровненные границы зерен способствуют плавному течению магнитных сил и минимизируют потери энергии. Напротив, плохо расположенные границы препятствуют магнитному выравниванию, что значительно снижает эффективность магнита. Магнитные характеристики каждого зерна определяются его магнитным доменом — скоплением атомов с магнитными полями, выровненными в одном направлении. Эти домены можно представить себе как миниатюрные магниты, работающие в унисон. Чем более равномерно выровнены домены в зернах, тем сильнее и сплоченнее становится магнит в целом. Однако добиться такого выравнивания в нанокомпозитных магнитах невероятно сложно, поскольку в их состав входит множество различных материалов. Из-за сложности материала выравнивание магнитных доменов равномерно по всем зернам становится затруднительным. В исследованиях Баруа с помощью DED тщательно контролируется формирование зерен и взаимодействие их границ. Печатая нанокомпозитные магниты слой за слоем, ее команда стремится оптимизировать микроструктуру и обеспечить выравнивание магнитных доменов для достижения максимальной эффективности. Нанокомпозитные альтернативы редкоземельным магнитамРедкоземельные магниты, которые Баруа надеется заменить, обладают исключительной магнитной силой и стабильностью. Их кристаллические структуры обладают магнитокристаллической анизотропией — свойством ферромагнитного материала, при котором для намагничивания в одном направлении требуется больше энергии, чем в другом. Это свойство обеспечивает способность редкоземельных магнитов оставаться магнитными после процесса намагничивания. Не обладая магнитокристаллической анизотропией, нанокомпозитные магниты без редкоземельных элементов используют свою тонкую микроструктуру для усиления магнитных свойств. Это достигается на наноуровне с помощью DED для объединения различных переходных 3d-элементов ( «d» здесь означает форму d-орбиталей в электронной конфигурации атома) из периодической таблицы, таких как железо, медь и марганец. Расплавленный материал быстро остывает после печати в DED. Быстро затвердевающие сплавы демонстрируют уникальные структурные свойства, которые приводят к тонкой микроструктуре, в результате чего размер зерен уменьшается, а фазы распределяются более равномерно. В данном случае фаза — это название химически однородных и физически различных областей материала, таких как различные элементы, из которых состоит сплав. Эти особенности могут улучшить физические свойства, например, повысить прочность и вязкость. Кроме того, быстрое охлаждение предотвращает образование равновесных фаз, которые ограничивают характеристики магнитных материалов. Неравновесные структуры, образующиеся при быстром охлаждении, как правило, обладают более сильной магнитной анизотропией и мелкозернистой структурой.
Анизотропия формыМагнитные материалы могут склоняться к определенной ориентации в зависимости от формы. Если частицы расположены в виде игл, магнитные силы внутри иглы будут стремиться выровняться вдоль самой длинной оси. Это и есть анизотропия формы. Анизотропия обменного смещенияКогда композит из 3d-переходных элементов включает ферромагнитную и антиферромагнитную фазы, исследователи могут использовать анизотропию обменного смещения. При наслоении легко намагничивающегося ферромагнитного материала на антиферромагнитный материал, полученный композит становится легче намагничиваться в определенном направлении, создавая смещение в этом направлении на межфазной границе между двумя слоями. В результате получается постоянный магнит, который может накапливать и отдавать больше энергии, оставаясь намагниченным при высоких температурах. Стягивание доменных стенокПодобно тому как границы зерен представляют собой физическое пространство, в котором встречаются два зерна, доменная стенка является границей между двумя магнитными доменами. Когда доменные стенки могут свободно перемещаться, сдвиг магнитных моментов доменов может привести к потере магнитных свойств, особенно под воздействием внешних магнитных полей или изменения температуры. Закрепление доменных стенок препятствует движению доменных стенок и достигается путем введения структурных дефектов или примесей в материал. Эти дефекты действуют как препятствия, захватывая доменные стенки и не позволяя им легко перемещаться. Это сопротивление создает ситуацию, в которой материал может намагничиваться более эффективно и дольше удерживать магнетизм. Этот процесс называется пиннингом доменных стенок. Настройка микроструктуры с помощью компьютерного моделированияХимически однородный и физически отличный материал в нанокомпозитном сплаве, влияющий на его магнитные свойства, называется первичной фазой матрицы. Частицы вторичной фазы в том же материале представляют собой дополнительные материалы, которые изменяют поведение первичной фазы. Достижение оптимального размера, формы и распределения частиц вторичной фазы имеет решающее значение для улучшения магнитных свойств. С этой целью Баруа сотрудничает с Джаясимхой Атуласимхой, доктором философии, профессором инженерного фонда на факультете механического и ядерного машиностроения, для проведения микромагнитного моделирования. Эти симуляции моделируют и предсказывают влияние различных характеристик частиц на общее поведение магнита, облегчая разработку передовых нанокомпозитных магнитов с улучшенными характеристиками.
Все вместеЦентр передового производства Содружества (CCAM) является ключевым местом для исследований Баруа в области аддитивного производства. Принтеры, используемые в процессе DED, находятся в CCAM, а консорциум академических и промышленных специалистов, которые сотрудничают там, создает уникальную среду обучения. Такие исследователи, как Баруа, могут финансировать аспирантов через CCAM и предоставлять им необходимые возможности практического и экспериментального обучения. Это уникальная модель развития рабочей силы, где промышленность помогает исследованиям, а студенты получают навыки, позволяющие им внести значительный вклад в работу компаний, которые сразу же принимают их на работу. Центр передового производства Содружества — это хорошая возможность для студентов понять, как работает промышленность и каковы ее потребности. В CCAM команда Баруа внесла значительные усовершенствования в машину DED, например, интегрировала массив постоянных магнитов Хальбаха под базовый слой печати, чтобы повысить общую эффективность производства. Использование магнитного поля под базовым печатным слоем позволяет устранить недостаток, присущий системам DED с порошковым напылением. Во время печати металлический порошок распыляется в лазере, где он нагревается и плавится. Поскольку это распыление, не весь порошок попадает туда, куда нужно. Измерение того, сколько порошка попадает в нужную область, называется эффективностью захвата. С помощью магнитных полей решетки Хальбаха потоки металлического порошка, реагирующие на магнетизм, могут быть сфокусированы для повышения эффективности захвата. Это уменьшает отходы материала и позволяет системе DED быть более точной, потребляя меньше энергии.
Получив степень бакалавра в области химического машиностроения, Баруа приехала в США из Индии, чтобы сделать карьеру в области химического машиностроения. Во время защиты докторской диссертации она переключилась на материаловедение, работая со своим консультантом в исследовательской группе по наномагнетизму в Северо-Восточном университете в Бостоне.
Ранее ученые заявили, что магниты облегчают симптоматику Альцгеймера. 15.01.2025 |
Хайтек
![]() | |
Легкие и прочные: как Al-Sc сплавы покоряют промышленность | |
3D-печать меняет правила игры: она дает б... |
![]() | |
От шахт до чистой энергии: путь австралийской горнодобывающей промышленности | |
Горнодобывающая промышленность — эт... |
![]() | |
Ученые объединили два прибора в один, чтобы лучше анализировать газы | |
Физики из Санкт-Петербургского государств... |
![]() | |
Лазер, графен, полимер: как создают электронику, которую можно сгибать | |
Ученые из Томского политехнического униве... |
![]() | |
Световые качели: физики открыли новый способ управлять светом | |
Физики научились управлять светом в кроше... |
![]() | |
Тараканы-киборги — спасатели ближайшего будущего | |
От зон стихийных бедствий до экстрем... |
![]() | |
Магнит, зеленый свет и ультрафиолет: новые горизонты молекулярной химии | |
Химики создали новые соединения на основе... |
![]() | |
Свет вместо проводов: Оксфорд произвел революцию в квантовых вычислениях | |
Ученые из Оксфорда сделали большой шаг&nb... |
![]() | |
Органический катализатор, который имитирует металлы: открытие химиков СПбГУ | |
Химики из Санкт-Петербургского государств... |
![]() | |
Томские ученые раскрыли секреты молекулярных взаимодействий | |
Ученые из Томского политехнического униве... |
![]() | |
100 миллионов за молекулярный прорыв: в Уфе запустили супер-спектрометр | |
В Уфимском федеральном исследовательском центр... |
![]() | |
Прощай, кэш-память: новая технология сэкономит энергию и ускорит устройства | |
Исследователи вместе с французской компан... |
![]() | |
Энергия будущего: низкотемпературная плазма и ее невероятные возможности | |
Питер Брюггеман, профессор машиностроения из&n... |
![]() | |
10 секунд до чистоты: история устройства, которое изменило дезинфекцию | |
Ручной прибор MBR UV-C Light Products работает... |
![]() | |
От идеи до Росатома: история успеха проекта RSP | |
В НИЯУ МИФИ создали онлайн-сервис —... |
![]() | |
CARMA II — автономный робот, который делает ядерные объекты безопаснее | |
Передовая роботизированная система CARMA II ус... |
![]() | |
Нейросети будущего: поляритоны в СПбГУ бьют рекорды точности | |
Ученые из Санкт-Петербургского государств... |
![]() | |
Биотопливо за полтора часа: как томские ученые подстегнули энергетику | |
Междисциплинарная команда ученых из Томск... |
![]() | |
MIT учит дронов избегать столкновений: новый метод GCBF+ | |
Инженеры из MIT придумали, как сдела... |
![]() | |
Свет, который не вредит: в КНИТУ-КАИ открыли новый способ исследования клеток | |
Молодые ученые из КНИТУ-КАИ совершили про... |
![]() | |
Фокус на будущее: киноформные линзы меняют правила игры | |
Сотрудники лаборатории 3D-печати функциональны... |
![]() | |
ПГУ: Струна и закон Архимеда помогут сэкономить миллионы на нефтепродуктах | |
Ученые из Пензенского государственного ун... |
![]() | |
Российский минерал совершил революцию в мире двумерных материалов | |
Ученые Томского политехнического университета ... |
![]() | |
Свет из земли: как глина превратилась в дисплей | |
Мир дисплеев скоро изменится благодаря новым м... |
![]() | |
Будущее горнодобывающей промышленности: инновации, меняющие правила игры | |
Дэвид Джайлс, главный научный сотрудник MinEx ... |
![]() | |
В МИФИ создан радиоизотопный прибор для отечественной металлургии | |
В Национальном исследовательском ядерном униве... |
![]() | |
NatComm: Найден «благородный» способ увеличить вместимость карт памяти | |
Электронику будущего можно сделать еще ме... |
![]() | |
Преодоление физических барьеров: на пути к новым квантовым технологиям | |
Комментирует профессор Майя Вергниори, которая... |
![]() | |
Впервые в России: в Катайске начали выпуск уникальных насосов | |
Катайский насосный завод, который находится в&... |
![]() | |
Ученые ТПУ продемонстрировали, как у капель появляются «пальцы» | |
Исследователи из Томского политехническог... |