В КФУ вырастили идеальные плёнки для создания градиентного магнитного материала
Учёные Казанского университета впервые применили технологию молекулярно-лучевой эпитаксии для создания градиентных магнитных материалов.
Учёные Института физики Казанского федерального университета совместно с коллегами из Московского физико-технического института вырастили тонкие плёнки сплава палладий–железо. Для этого они использовали метод молекулярно-лучевой эпитаксии. В результате были получены «градиентные» магнитные материалы с контролируемым распределением магнитной примеси по толщине.
Исследования показали, что профилем распределения можно управлять спектром стоячих обменных спиновых волн.
Работа опубликована в специальном выпуске американского журнала Journal of Vacuum Science & Technology A.
Исследования провели в НИЛ «Гетероструктуры для посткремниевой электроники» Института физики КФУ.
Работу выполнил главный научный сотрудник НИЛ, академик Академии наук РТ Ленар Тагиров и другие учёные: Роман Юсупов, Амир Гумаров, Игорь Янилкин, Айрат Киямов, Булат Габбасов и Игорь Головчанский.
Исследование проводилось при поддержке Российского научного фонда.
Спиновые волны или магноны — это колебания магнитных моментов в ферро-, антиферро- и ферримагнетиках. Они могут использоваться для передачи и обработки информации в новой области спин-волновой электроники — магнонике.
Учёные уже умеют возбуждать, передавать и считывать магноны. Но есть проблема: спектр спиновых волн у разных материалов чётко определён, поэтому сложно соединять их в одном устройстве.
Однако развитие технологий создания тонких плёнок с заданными магнитными свойствами открывает новые возможности управления спектром спиновых волн. Это поможет развивать магнонику как способ передачи и обработки данных, — считает руководитель проекта Амир Гумаров.
Плёнки с неоднородными магнитными свойствами позволяют управлять спиновыми волнами. Существует мало экспериментальных работ о синтезе магнитных материалов с заданным распределением магнитных свойств ( «градиентных» магнитных материалов).
Есть несколько методов получения таких материалов: химическое осаждение, жидкофазная эпитаксия, магнетронное распыление и ионная имплантация. Учёные КФУ впервые использовали технологию молекулярно-лучевой эпитаксии для создания градиентных магнитных материалов.
Сплав палладия и железа оказался идеальным для создания градиентного магнитного материала.
У этого сплава есть несколько преимуществ:
- Возможность менять его магнитные параметры, такие как намагниченность насыщения, коэрцитивное поле, энергия обменного расщепления зоны проводимости и магнитная анизотропия, меняя концентрацию железа.
- Благородный металл в составе сплава не окисляется со временем и сохраняет свои магнитные свойства десятки лет.
- Можно контролировать профиль распределения концентрации железа в матрице палладия. Это позволяет наблюдать проявление магнонных мод в потенциальной яме искусственно заданного магнитного профиля.
Игорь Янилкин поясняет, что благодаря профилированию магнитных свойств плёнки можно управлять её спин-волновыми резонансами.
Физики Казанского университета сообщили, что для получения сплавов использовались две испарительные ячейки с исходными материалами — палладием и железом.
В процессе роста плёнки температура ячейки с палладием была постоянной, а температура ячейки с железом менялась по заданному протоколу изменения скорости нагрева/охлаждения во времени. Это позволило вырастить плёнки с неоднородным распределением железа в матрице палладия.
У нас уже был опыт получения неоднородного профиля распределения магнитной примеси железа в матрице палладия, но мы использовали ионную имплантацию. Этот метод не позволял нам точно контролировать профиль распределения концентрации железа по толщине плёнки, поэтому управлять спектром собственных магнонных мод было трудно, — сообщил Ленар Тагиров.
Учёные синтезировали градиентные плёнки из сплава палладия и железа, чтобы изучить возможность управления спектром стоячих спин-волновых резонансов. Они исследовали возбуждение спиновых волн методом ферромагнитного резонанса при разных условиях.
Роман Юсупов рассказал, что в ходе эксперимента учёные наблюдали картину резонансного поглощения, которая соответствовала заданному профилю плёнок. Измерение спектров спин-волнового резонанса подтвердило существующую теорию.
Наши образцы — низкотемпературные ферромагнетики. Но мы смогли сделать так, чтобы спиновые волны наблюдались и при комнатной температуре. Это важно для практических приложений в магнонике, где компоненты не нужно охлаждать.
Иллюстрация: нейросеть