Лазерные технологии будущего помогают создать микронаноматериал за один этап

Сверхбыстрый лазер всегда применялся в качестве точечного источника энергии для запуска различных модификаций материалов, а профиль интенсивности света в основном считался гауссовым. Поэтому фактическая морфология и эволюция светового поля в фокальном объеме остаются без внимания.

В International Journal of Extreme Manufacturing исследователи указывают, что трехмерное пространственное распределение светового поля в фокусе может обладать более тонкими структурами и настраиваться, что предлагает новую стратегию для высококонтролируемого изготовления микронаноматериалов с большим количеством степеней свободы, чем обычная оптическая модификация «точка за точкой».

Предложено и экспериментально продемонстрировано, что световые поля в фокальном объеме, индуцированные во время сверхбыстрого взаимодействия лазера с веществом, могут быть применены для высокоинтегрированного и контролируемого одноэтапного структурирования композитов в фокусе однолучевого сверхбыстрого лазера.

Подтверждено, что принципы являются универсальными и широко применимыми в различных типах прозрачных диэлектриков, а созданные композитные структуры обладают большим потенциалом для различных применений, таких как многомерная защита от подделок, шифрование информации, нелинейные планарные линзы и многофункционально интегрированные фотонные кристаллы.

Создание различных типов микронаноструктур за один шаг с помощью однолучевого сверхбыстрого лазера традиционно очень сложно и даже обычно не входит в рамки сверхбыстрой лазерной прямой записи, поскольку типичное распределение света обычно предполагается как гауссово в фокальном объеме», — говорит Бо Чжан, первый автор статьи и научный сотрудник Чжэцзянского университета.

Можем ли мы управлять микроскопическим оптическим поведением высокоинтенсивного взаимодействия света и вещества в фокальном объеме в микро-нано масштабе, чтобы сделать его обладателем настраиваемых тонких структур? Если это возможно, то это обеспечит новую стратегию для высококонтролируемого создания микронаноструктур с большим количеством степеней свободы, чем обычная точечная оптическая модификация.

Микронаноструктуры лежат в основе оптических компонентов для манипулирования светом в различных измерениях. В частности, было обнаружено, что композитные микронаноструктуры, построенные в 3D, позволяют создавать новые фотонные устройства с беспрецедентным контролем степеней свободы над состоянием электромагнитных волн и стали новым исследовательским фронтиром в нанофотонной науке и инженерии.

В настоящее время создание композитных микронаноструктур в значительной степени зависит от сложных многоэтапных процессов микронанообработки, где интеграция различных структурных характеристик остается ограниченной. Быстрое создание композитных микронаноструктур с высоким уровнем интеграции в 3D-пространстве долгое время оставалось узким местом из-за отсутствия эффективных подходов к изготовлению.

Сверхбыстрое взаимодействие лазера с веществом стало отличной платформой для подготовки функциональных элементов в прозрачных средах. Исследователи потратили три года на изучение сверхбыстрого лазерно-индуцированного фокусного объемного светового поля и реализовали генерацию, визуализацию и манипулирование фокусными объемными световыми полями. Они обнаружили, что фокусное объемное световое поле может служить универсальным инструментом для создания различных передовых функциональных композитных структур, недостижимых с помощью традиционных методов, и предложили интерференционную модель фокусного объемного светового поля.

Экспериментальные результаты подтвердили, что структурирование композитов на основе фокальной объемной оптической печати может служить универсальным методом структурирования композитов, позволяющим создавать композитные структуры в различных прозрачных диэлектриках с большим потенциалом в различных аспектах фотоники.

Было бы интересно объединить наш подход с технологиями пространственной модуляции света, новыми фотоэлектрическими материалами и интеллектуальными методами планирования траектории для разработки обобщенной стратегии получения функциональных фотонных элементов по требованию в различных прозрачных диэлектриках, что позволит создавать полностью неорганические интегрированные оптические системы следующего поколения, — сказал соавтор работы Цзяньронг Цю, академик Всемирной академии керамики.

Это благодатная почва, которая заслуживает более глубоких исследований в будущем.

Ранее ученые сообщили об изобретении лазера с низкой зернистостью.

08.01.2025


Подписаться в Telegram



Хайтек

Легкие и прочные: как Al-Sc сплавы покоряют промышленность
Легкие и прочные: как Al-Sc сплавы покоряют промышленность

3D-печать меняет правила игры: она дает б...

Световые качели: физики открыли новый способ управлять светом
Световые качели: физики открыли новый способ управлять светом

Физики научились управлять светом в кроше...

Тараканы-киборги — спасатели ближайшего будущего
Тараканы-киборги — спасатели ближайшего будущего

От зон стихийных бедствий до экстрем...

Томские ученые раскрыли секреты молекулярных взаимодействий
Томские ученые раскрыли секреты молекулярных взаимодействий

Ученые из Томского политехнического униве...

100 миллионов за молекулярный прорыв: в Уфе запустили супер-спектрометр
100 миллионов за молекулярный прорыв: в Уфе запустили супер-спектрометр

В Уфимском федеральном исследовательском центр...

От идеи до Росатома: история успеха проекта RSP
От идеи до Росатома: история успеха проекта RSP

В НИЯУ МИФИ создали онлайн-сервис —...

CARMA II — автономный робот, который делает ядерные объекты безопаснее
CARMA II — автономный робот, который делает ядерные объекты безопаснее

Передовая роботизированная система CARMA II ус...

Нейросети будущего: поляритоны в СПбГУ бьют рекорды точности
Нейросети будущего: поляритоны в СПбГУ бьют рекорды точности

Ученые из Санкт-Петербургского государств...

MIT учит дронов избегать столкновений: новый метод GCBF+
MIT учит дронов избегать столкновений: новый метод GCBF+

Инженеры из MIT придумали, как сдела...

Фокус на будущее: киноформные линзы меняют правила игры
Фокус на будущее: киноформные линзы меняют правила игры

Сотрудники лаборатории 3D-печати функциональны...

Российский минерал совершил революцию в мире двумерных материалов
Российский минерал совершил революцию в мире двумерных материалов

Ученые Томского политехнического университета ...

Свет из земли: как глина превратилась в дисплей
Свет из земли: как глина превратилась в дисплей

Мир дисплеев скоро изменится благодаря новым м...

В МИФИ создан радиоизотопный прибор для отечественной металлургии
В МИФИ создан радиоизотопный прибор для отечественной металлургии

В Национальном исследовательском ядерном униве...

Преодоление физических барьеров: на пути к новым квантовым технологиям
Преодоление физических барьеров: на пути к новым квантовым технологиям

Комментирует профессор Майя Вергниори, которая...

Впервые в России: в Катайске начали выпуск уникальных насосов
Впервые в России: в Катайске начали выпуск уникальных насосов

Катайский насосный завод, который находится в&...

Ученые ТПУ продемонстрировали, как у капель появляются «пальцы»
Ученые ТПУ продемонстрировали, как у капель появляются «пальцы»

Исследователи из Томского политехническог...

Поиск на сайте

Знатоки клуба инноваций


ТОП - Новости мира, инновации

Невидимые враги: как ароматизаторы превращают ваш дом в угрозу для здоровья
Невидимые враги: как ароматизаторы превращают ваш дом в угрозу для здоровья
Легкие и прочные: как Al-Sc сплавы покоряют промышленность
Легкие и прочные: как Al-Sc сплавы покоряют промышленность
Cell Reports: Голодание приносит пользу взрослым, но создает риск для подростков
Cell Reports: Голодание приносит пользу взрослым, но создает риск для подростков
69 ученых, которые меняют мир: история успеха из Нижнего Новгорода
69 ученых, которые меняют мир: история успеха из Нижнего Новгорода
Как взрываются звезды: открытия, которые меняют наше представление о Вселенной
Как взрываются звезды: открытия, которые меняют наше представление о Вселенной
Спасти жизнь за минуты сможет кетамин в борьбе с эпилептическим статусом
Спасти жизнь за минуты сможет кетамин в борьбе с эпилептическим статусом
Как получить инструмент будущих инженеров бесплатно, если ты студент
Как получить инструмент будущих инженеров бесплатно, если ты студент
От шахт до чистой энергии: путь австралийской горнодобывающей промышленности
От шахт до чистой энергии: путь австралийской горнодобывающей промышленности
Больничные раковины и невидимый враг, который в них живет
Больничные раковины и невидимый враг, который в них живет
Цикорий и кобальт: дуэт против рака, бьющий точно в цель
Цикорий и кобальт: дуэт против рака, бьющий точно в цель
Без капитана, но с комфортом: в Нижнем Новгороде строят судно без экипажа
Без капитана, но с комфортом: в Нижнем Новгороде строят судно без экипажа
Лазер, графен, полимер: как создают электронику, которую можно сгибать
Лазер, графен, полимер: как создают электронику, которую можно сгибать
Ученые объединили два прибора в один, чтобы лучше анализировать газы
Ученые объединили два прибора в один, чтобы лучше анализировать газы
Световые качели: физики открыли новый способ управлять светом
Световые качели: физики открыли новый способ управлять светом
Удаленка навсегда: как бизнес адаптируется к новым реалиям
Удаленка навсегда: как бизнес адаптируется к новым реалиям

Новости компаний, релизы

Более 200 нижегородцев посетили научные кинопоказы честь Дня российской науки
Школьников и студентов Хабаровского края приглашают написать всероссийский диктант «Наука во имя Победы»
На Фестивале «Москва — Точка старта» победили проекты из МИФИ
«Десятилетие науки и технологий»: волгоградские ученые получили премии и гранты
Три представительницы Республики Татарстан стали победителями Всероссийского конкурса Знание.Лектор