![]() |
Человек научился делать многое, но у растений есть способность, которой нет у людей: они получают энергию напрямую из солнечного света с помощью фотосинтеза. Новое исследование ученых из Университета Осака Метрополитен сокращает этот разрыв. Исследователи раскрыли 3D-структуру искусственного белкового комплекса фотосинтетической антенны, известного как светоулавливающий комплекс II (LHCII). Они продемонстрировали, что искусственный LHCII в точности повторяет свой природный аналог. Это открытие поможет понять, как растения собирают и управляют солнечной энергией, а также приведет к инновациям в области искусственного фотосинтеза. Исследование ученых из Высшей школы науки и Исследовательского центра искусственного фотосинтеза под руководством доцента Рицуко Фудзии и аспиранта Соитиро Секи опубликовано в журнале PNAS Nexus. Фотосинтез превращает солнечный свет в полезную энергию. В этом сложном процессе участвуют сотни различных молекул и белков. Один из них — LHCII, распространенный пигментно-белковый комплекс, который улавливает солнечный свет и направляет энергию в процесс фотосинтеза. LHCII состоит из множества белков и молекул пигментов, поэтому воссоздать его непросто. И важный вопрос в том, насколько эти имитации будут близки к творению природы.
Ученые восстанавливают LHCII вне растений с помощью техники in vitro: синтезируют белковую часть LHCII в кишечной палочке и соединяют ее с натуральными пигментами и липидами. Исследовательская группа использовала криоэлектронную микроскопию, чтобы проанализировать 3D-структуру восстановленного LHCII. Этот метод позволяет получать изображения образцов, замороженных при очень низких температурах. Благодаря этому можно детально рассмотреть расположение пигментов и белков внутри комплекса. Метод получил Нобелевскую премию по химии в 2017 году.
Результаты подтверждают эффективность метода восстановления in vitro и открывают новые возможности для изучения работы LHCII и его роли в фотосинтезе. Это поможет в будущем добиться успехов в искусственном фотосинтезе и создании новых технологий производства растений.
28.10.2024 |
Энергия
![]() | |
Энергия из распада: углерод-14 может заменить литиевые батареи | |
Вы наверняка сталкивались с тем, что ... |
![]() | |
Зеленый свет для лития-6: без ртути, но с нужным эффектом | |
Ядерный синтез — это процесс, ... |
![]() | |
Красный свет науки: как химики создали идеальный люминофор | |
Химики из Санкт-Петербургского университе... |
![]() | |
Точка кипения: почему никелевые аккумуляторы могут быть опасны | |
Никель — важный элемент для ак... |
![]() | |
Как использовать отработанное тепло: открытие японских ученых | |
Энергоэффективность — это не&n... |
![]() | |
Канада ставит на свой уран: как CANDU изменит энергетическую карту мира | |
Канада продолжает укреплять свои позиции в&nbs... |
![]() | |
Палладий против платины: ученые удешевили производство водорода | |
Водородная энергетика — это од... |
![]() | |
Грязь в дело: ученые нашли способ использовать нефтешлам | |
Ученые из Томского политехнического униве... |
![]() | |
Энергия звезд на Земле: сделан шаг к коммерческому термоядерному синтезу | |
Компания Proxima Fusion и ее партнер... |
![]() | |
Маленькие, но мощные: как SMR решают большие проблемы энергетики | |
Сотрудничество ANItA с Уппсальским универ... |
![]() | |
Толстые электроды стали тоньше: прорыв в производстве батарей | |
Корейский институт машиностроения и матер... |
![]() | |
Газовые гидраты против вредных выбросов: прорыв в утилизации угольного шлама | |
Ученые из Томского политехнического униве... |
![]() | |
Энергетический щит: защищать сеть смогут бытовые устройства | |
Инженеры из Массачусетского технологическ... |
![]() | |
Энергия из-под земли: новая разработка Томского политеха | |
Инженеры из Томского политехнического уни... |
![]() | |
Атомный ренессанс: Швеция возвращается к ядерной энергии | |
Швеция вновь обратила внимание на атомную... |
![]() | |
Аммиак без жертв: как японские ученые упростили производство | |
Мир стремится к устойчивому развитию, и&n... |
![]() | |
Новые технологии, новые партнеры: что задумали в ННГУ | |
Нижегородский государственный университет имен... |
![]() | |
Российские ученые разрабатывают аккумуляторы для электромобилей и дронов | |
Ученые из Уфимского института химии работ... |
![]() | |
От лаборатории к реальности: как кристаллы времени заряжают мир | |
Мир хранения энергии меняется благодаря кванто... |
![]() | |
Китай впереди, а мир догоняет: битва за переработку аккумуляторов начинается | |
Компания Cirba Solutions активно развивает отр... |
![]() | |
Квантовый секрет растений: как природа превращает свет в энергию | |
Превращение солнечной энергии в химическу... |
![]() | |
Аккумуляторная революция: Франция строит завод мечты для электрокаров | |
Европейская комиссия дала зеленый свет огромно... |
![]() | |
Энергия атома для производства водорода: перспективы развития технологии | |
Доктор Уильям Бодель из Далтонского ядерн... |
![]() | |
Реактивное топливо на основе лигнина совершает прорыв в хранении водорода | |
Инновационный прорыв в технологии хранени... |
![]() | |
Определена роль термоядерной энергетики в обеспечении экологической безопасности | |
Карл Тишлер из европейского консорциума п... |
![]() | |
1066 секунд: Китай приблизился к созданию неисчерпаемого источника энергии | |
Стремление Китая использовать энергию звезд до... |
![]() | |
Министерство энергетики США инвестирует в технологии декарбонизации | |
Министерство энергетики США уделяет приор... |
![]() | |
Термоядерный прорыв: SMART добыл первую плазму | |
Токамак SMART успешно произвел первую плазму, ... |
![]() | |
В ТПУ добавили отходы в пеллеты и снизили выбросы CO2 на 20% | |
Ученые Томского политехнического университета ... |
![]() | |
Тепло шахтных вод: Великобритания приближается к чистой энергии | |
Живая лаборатория по использованию тепла ... |